Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Aldag
1
75 kgGaute Hølestøl
2
83 kgSchmidt
3
73 kgLiese
4
75 kgTeutenberg
7
66 kgVan Lancker
8
67 kgRittsel
13
70 kgUllrich
14
73 kgCretskens
21
75 kgSørensen
23
71 kgKjærgaard
24
74 kgDietz
28
69 kgZabel
30
69 kgMüller
35
79 kgJaksche
36
69 kgValjavec
37
59 kgLang
53
77 kgMcGrory
56
73 kgBecke
57
75 kgPollack
59
77 kgWeissinger
69
74 kg
1
75 kgGaute Hølestøl
2
83 kgSchmidt
3
73 kgLiese
4
75 kgTeutenberg
7
66 kgVan Lancker
8
67 kgRittsel
13
70 kgUllrich
14
73 kgCretskens
21
75 kgSørensen
23
71 kgKjærgaard
24
74 kgDietz
28
69 kgZabel
30
69 kgMüller
35
79 kgJaksche
36
69 kgValjavec
37
59 kgLang
53
77 kgMcGrory
56
73 kgBecke
57
75 kgPollack
59
77 kgWeissinger
69
74 kg
Weight (KG) →
Result →
83
59
1
69
# | Rider | Weight (KG) |
---|---|---|
1 | ALDAG Rolf | 75 |
2 | GAUTE HØLESTØL Svein | 83 |
3 | SCHMIDT Torsten | 73 |
4 | LIESE Thomas | 75 |
7 | TEUTENBERG Sven | 66 |
8 | VAN LANCKER Kurt | 67 |
13 | RITTSEL Martin | 70 |
14 | ULLRICH Jan | 73 |
21 | CRETSKENS Wilfried | 75 |
23 | SØRENSEN Nicki | 71 |
24 | KJÆRGAARD Steffen | 74 |
28 | DIETZ Bert | 69 |
30 | ZABEL Erik | 69 |
35 | MÜLLER Martin | 79 |
36 | JAKSCHE Jörg | 69 |
37 | VALJAVEC Tadej | 59 |
53 | LANG Sebastian | 77 |
56 | MCGRORY Scott | 73 |
57 | BECKE Daniel | 75 |
59 | POLLACK Olaf | 77 |
69 | WEISSINGER René | 74 |