Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Zabel
1
69 kgVoigt
2
76 kgSchumacher
3
71 kgWeissinger
5
74 kgRich
11
82 kgKlöden
12
63 kgMüller
13
79 kgCheula
15
62 kgArvesen
16
74 kgNapolitano
17
81 kgChristensen
18
66 kgGlasner
19
72 kgMarinangeli
20
65 kgLequatre
21
64 kgNuritdinov
22
68 kgBrożyna
24
65 kgKopp
26
68 kg
1
69 kgVoigt
2
76 kgSchumacher
3
71 kgWeissinger
5
74 kgRich
11
82 kgKlöden
12
63 kgMüller
13
79 kgCheula
15
62 kgArvesen
16
74 kgNapolitano
17
81 kgChristensen
18
66 kgGlasner
19
72 kgMarinangeli
20
65 kgLequatre
21
64 kgNuritdinov
22
68 kgBrożyna
24
65 kgKopp
26
68 kg
Weight (KG) →
Result →
82
62
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | ZABEL Erik | 69 |
2 | VOIGT Jens | 76 |
3 | SCHUMACHER Stefan | 71 |
5 | WEISSINGER René | 74 |
11 | RICH Michael | 82 |
12 | KLÖDEN Andreas | 63 |
13 | MÜLLER Martin | 79 |
15 | CHEULA Giampaolo | 62 |
16 | ARVESEN Kurt-Asle | 74 |
17 | NAPOLITANO Danilo | 81 |
18 | CHRISTENSEN Bekim Leif | 66 |
19 | GLASNER Björn | 72 |
20 | MARINANGELI Sergio | 65 |
21 | LEQUATRE Geoffroy | 64 |
22 | NURITDINOV Rafael | 68 |
24 | BROŻYNA Tomasz | 65 |
26 | KOPP David | 68 |