Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Soler
1
70 kgRatti
2
64 kgGonzalo
3
66 kgPietropolli
4
61 kgSijmens
5
69 kgLaurent
6
72 kgRiblon
7
65 kgDe Schrooder
10
61 kgHervé
11
60 kgMengin
13
68 kgLequatre
14
64 kgBuffaz
16
64 kgCannone
17
75 kgSprick
18
71 kgMéderel
20
59 kgLadagnous
24
73 kgAxelsson
26
73 kgDuclos-Lassalle
27
63 kgKern
28
72 kgUsov
29
63 kgDueñas
30
61 kg
1
70 kgRatti
2
64 kgGonzalo
3
66 kgPietropolli
4
61 kgSijmens
5
69 kgLaurent
6
72 kgRiblon
7
65 kgDe Schrooder
10
61 kgHervé
11
60 kgMengin
13
68 kgLequatre
14
64 kgBuffaz
16
64 kgCannone
17
75 kgSprick
18
71 kgMéderel
20
59 kgLadagnous
24
73 kgAxelsson
26
73 kgDuclos-Lassalle
27
63 kgKern
28
72 kgUsov
29
63 kgDueñas
30
61 kg
Weight (KG) →
Result →
75
59
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | SOLER Juan Mauricio | 70 |
2 | RATTI Eddy | 64 |
3 | GONZALO Eduardo | 66 |
4 | PIETROPOLLI Daniele | 61 |
5 | SIJMENS Nico | 69 |
6 | LAURENT Christophe | 72 |
7 | RIBLON Christophe | 65 |
10 | DE SCHROODER Benny | 61 |
11 | HERVÉ Cédric | 60 |
13 | MENGIN Christophe | 68 |
14 | LEQUATRE Geoffroy | 64 |
16 | BUFFAZ Mickaël | 64 |
17 | CANNONE Donato | 75 |
18 | SPRICK Matthieu | 71 |
20 | MÉDEREL Maxime | 59 |
24 | LADAGNOUS Matthieu | 73 |
26 | AXELSSON Niklas | 73 |
27 | DUCLOS-LASSALLE Hervé | 63 |
28 | KERN Christophe | 72 |
29 | USOV Alexandre | 63 |
30 | DUEÑAS Moisés | 61 |