Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 21
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Petrov
6
76 kgKudra
7
68 kgMegyerdi
8
65 kgSmolík
9
73 kgZieliński
12
80 kgHáva
14
62 kgKegel
17
72 kgHoffmann
18
65 kgČubrić
24
80 kgAndresen
27
75 kgSaidkhuzhin
29
69 kgAndresen
31
80 kgBilsland
35
73 kgMagiera
36
78 kgJuszko
43
78 kgTakács
44
65 kgKotev
48
82 kgMahó
50
70 kgOlizarenko
54
72 kgCiocan
58
72 kgHonkanen
64
78 kgSkibby
68
69 kgWackström
74
76 kg
6
76 kgKudra
7
68 kgMegyerdi
8
65 kgSmolík
9
73 kgZieliński
12
80 kgHáva
14
62 kgKegel
17
72 kgHoffmann
18
65 kgČubrić
24
80 kgAndresen
27
75 kgSaidkhuzhin
29
69 kgAndresen
31
80 kgBilsland
35
73 kgMagiera
36
78 kgJuszko
43
78 kgTakács
44
65 kgKotev
48
82 kgMahó
50
70 kgOlizarenko
54
72 kgCiocan
58
72 kgHonkanen
64
78 kgSkibby
68
69 kgWackström
74
76 kg
Weight (KG) →
Result →
82
62
6
74
# | Rider | Weight (KG) |
---|---|---|
6 | PETROV Aleksei | 76 |
7 | KUDRA Jan | 68 |
8 | MEGYERDI Antal | 65 |
9 | SMOLÍK Jan | 73 |
12 | ZIELIŃSKI Rajmund | 80 |
14 | HÁVA Jiří | 62 |
17 | KEGEL Marian | 72 |
18 | HOFFMANN Günter | 65 |
24 | ČUBRIĆ Radoš | 80 |
27 | ANDRESEN Thorleif | 75 |
29 | SAIDKHUZHIN Gainan | 69 |
31 | ANDRESEN Ørnulf | 80 |
35 | BILSLAND William | 73 |
36 | MAGIERA Jan | 78 |
43 | JUSZKO Janos | 78 |
44 | TAKÁCS András | 65 |
48 | KOTEV Dimitar | 82 |
50 | MAHÓ László | 70 |
54 | OLIZARENKO Anatoly | 72 |
58 | CIOCAN Constantin | 72 |
64 | HONKANEN Raimo | 78 |
68 | SKIBBY Willy | 69 |
74 | WACKSTRÖM Ole | 76 |