Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Szurkowski
1
77 kgSzozda
2
68 kgLikhachov
3
73 kgGorelov
5
70 kgNelyubin
6
71 kgNowicki
10
74 kgPrchal
13
77 kgWesemann
15
70 kgMatoušek
16
82 kgKühn
18
64 kgVasile
23
66 kgAllan
28
73 kgGriffith
30
70 kgPeterman
31
70 kgHuschke
32
75 kgRodian
35
73 kgDebreceni
42
78 kgJose
44
90 kgMartinov
49
79 kgGera
50
76 kgPrieto
72
61 kgTrevorrow
74
67 kg
1
77 kgSzozda
2
68 kgLikhachov
3
73 kgGorelov
5
70 kgNelyubin
6
71 kgNowicki
10
74 kgPrchal
13
77 kgWesemann
15
70 kgMatoušek
16
82 kgKühn
18
64 kgVasile
23
66 kgAllan
28
73 kgGriffith
30
70 kgPeterman
31
70 kgHuschke
32
75 kgRodian
35
73 kgDebreceni
42
78 kgJose
44
90 kgMartinov
49
79 kgGera
50
76 kgPrieto
72
61 kgTrevorrow
74
67 kg
Weight (KG) →
Result →
90
61
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | SZURKOWSKI Ryszard | 77 |
2 | SZOZDA Stanisław | 68 |
3 | LIKHACHOV Valery | 73 |
5 | GORELOV Nikolay | 70 |
6 | NELYUBIN Vladislav | 71 |
10 | NOWICKI Mieczysław | 74 |
13 | PRCHAL Jiri | 77 |
15 | WESEMANN Wolfgang | 70 |
16 | MATOUŠEK Petr | 82 |
18 | KÜHN Wolfram | 64 |
23 | VASILE Teodor | 66 |
28 | ALLAN Donald | 73 |
30 | GRIFFITH Phil | 70 |
31 | PETERMAN József | 70 |
32 | HUSCHKE Thomas | 75 |
35 | RODIAN Kjell | 73 |
42 | DEBRECENI Tibor | 78 |
44 | JOSE Graeme David | 90 |
49 | MARTINOV Martin | 79 |
50 | GERA Imre | 76 |
72 | PRIETO José | 61 |
74 | TREVORROW John | 67 |