Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Spokes
1
63 kgMas
3
61 kgVan Gestel
4
74 kgPibernik
5
60 kgKasperkiewicz
6
71 kgVermeulen
9
66 kgVan Rooy
10
70 kgSisr
11
72 kgBoroš
12
69 kgCuadros
13
67 kgPower
14
68 kgHoelgaard
15
74 kgStosz
16
70 kgDvorsky
19
64 kgTurek
20
72 kgDe Witte
21
61 kgLópez-Cózar
22
70 kgBaillifard
23
54 kgRuyters
25
69 kgČerný
26
75 kg
1
63 kgMas
3
61 kgVan Gestel
4
74 kgPibernik
5
60 kgKasperkiewicz
6
71 kgVermeulen
9
66 kgVan Rooy
10
70 kgSisr
11
72 kgBoroš
12
69 kgCuadros
13
67 kgPower
14
68 kgHoelgaard
15
74 kgStosz
16
70 kgDvorsky
19
64 kgTurek
20
72 kgDe Witte
21
61 kgLópez-Cózar
22
70 kgBaillifard
23
54 kgRuyters
25
69 kgČerný
26
75 kg
Weight (KG) →
Result →
75
54
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | SPOKES Samuel | 63 |
3 | MAS Enric | 61 |
4 | VAN GESTEL Dries | 74 |
5 | PIBERNIK Luka | 60 |
6 | KASPERKIEWICZ Przemysław | 71 |
9 | VERMEULEN Alexey | 66 |
10 | VAN ROOY Kenneth | 70 |
11 | SISR František | 72 |
12 | BOROŠ Michael | 69 |
13 | CUADROS Álvaro | 67 |
14 | POWER Robert | 68 |
15 | HOELGAARD Markus | 74 |
16 | STOSZ Patryk | 70 |
19 | DVORSKY David | 64 |
20 | TUREK Daniel | 72 |
21 | DE WITTE Mathias | 61 |
22 | LÓPEZ-CÓZAR Juan Antonio | 70 |
23 | BAILLIFARD Valentin | 54 |
25 | RUYTERS Brecht | 69 |
26 | ČERNÝ Josef | 75 |