Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Sleen
1
65 kgKuzmin
2
66 kgOtruba
3
75 kgSchinnagel
4
68 kgMałecki
5
69 kgvan den Berg
6
72 kgRajchart
7
70 kgJarc
8
75 kgIshigami
11
58 kgBouwmans
14
64 kgAlbanese
15
70 kgBogusławski
16
77 kgTsoy
17
73 kgFoss
18
74 kgvan der Tuuk
19
64 kgYamamoto
21
63 kgChzhan
22
71 kgRitzinger
24
80 kgMangertseder
26
69 kgAniołkowski
28
68 kgEinhorn
29
72 kg
1
65 kgKuzmin
2
66 kgOtruba
3
75 kgSchinnagel
4
68 kgMałecki
5
69 kgvan den Berg
6
72 kgRajchart
7
70 kgJarc
8
75 kgIshigami
11
58 kgBouwmans
14
64 kgAlbanese
15
70 kgBogusławski
16
77 kgTsoy
17
73 kgFoss
18
74 kgvan der Tuuk
19
64 kgYamamoto
21
63 kgChzhan
22
71 kgRitzinger
24
80 kgMangertseder
26
69 kgAniołkowski
28
68 kgEinhorn
29
72 kg
Weight (KG) →
Result →
80
58
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | SLEEN Torjus | 65 |
2 | KUZMIN Anton | 66 |
3 | OTRUBA Jakub | 75 |
4 | SCHINNAGEL Johannes | 68 |
5 | MAŁECKI Kamil | 69 |
6 | VAN DEN BERG Lars | 72 |
7 | RAJCHART Jan | 70 |
8 | JARC Aljaž | 75 |
11 | ISHIGAMI Masahiro | 58 |
14 | BOUWMANS Dylan | 64 |
15 | ALBANESE Vincenzo | 70 |
16 | BOGUSŁAWSKI Marceli | 77 |
17 | TSOY Vladimir | 73 |
18 | FOSS Tobias | 74 |
19 | VAN DER TUUK Danny | 64 |
21 | YAMAMOTO Masaki | 63 |
22 | CHZHAN Igor | 71 |
24 | RITZINGER Felix | 80 |
26 | MANGERTSEDER Matthias | 69 |
28 | ANIOŁKOWSKI Stanisław | 68 |
29 | EINHORN Itamar | 72 |