Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Díaz
1
64 kgPaterski
2
73 kgGrošelj
3
62 kgTracz
4
74 kgBudyak
5
53 kgHaig
7
67 kgCieślik
8
65 kgStosz
9
70 kgSchillinger
10
72 kgImpey
11
72 kgvan der Tuuk
12
64 kgHamilton
13
71 kgKukrle
14
73 kgSteimle
15
73 kgKrul
16
75 kgJuul-Jensen
17
73 kgGroßschartner
18
64 kgSchelling
19
61 kgMaas
20
70 kgIshibashi
21
68 kgBárta
22
75 kgThalmann
23
61 kg
1
64 kgPaterski
2
73 kgGrošelj
3
62 kgTracz
4
74 kgBudyak
5
53 kgHaig
7
67 kgCieślik
8
65 kgStosz
9
70 kgSchillinger
10
72 kgImpey
11
72 kgvan der Tuuk
12
64 kgHamilton
13
71 kgKukrle
14
73 kgSteimle
15
73 kgKrul
16
75 kgJuul-Jensen
17
73 kgGroßschartner
18
64 kgSchelling
19
61 kgMaas
20
70 kgIshibashi
21
68 kgBárta
22
75 kgThalmann
23
61 kg
Weight (KG) →
Result →
75
53
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | DÍAZ José Manuel | 64 |
2 | PATERSKI Maciej | 73 |
3 | GROŠELJ Žiga | 62 |
4 | TRACZ Szymon | 74 |
5 | BUDYAK Anatoliy | 53 |
7 | HAIG Jack | 67 |
8 | CIEŚLIK Paweł | 65 |
9 | STOSZ Patryk | 70 |
10 | SCHILLINGER Andreas | 72 |
11 | IMPEY Daryl | 72 |
12 | VAN DER TUUK Danny | 64 |
13 | HAMILTON Lucas | 71 |
14 | KUKRLE Michael | 73 |
15 | STEIMLE Jannik | 73 |
16 | KRUL Wessel | 75 |
17 | JUUL-JENSEN Christopher | 73 |
18 | GROßSCHARTNER Felix | 64 |
19 | SCHELLING Patrick | 61 |
20 | MAAS Jan | 70 |
21 | ISHIBASHI Manabu | 68 |
22 | BÁRTA Jan | 75 |
23 | THALMANN Roland | 61 |