Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 63
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Bugno
3
68 kgZberg
4
72 kgDufaux
6
60 kgMejia
9
63 kgLeMond
11
67 kgEarley
20
62 kgBourguignon
21
72 kgde Vries
23
75 kgVirenque
29
65 kgZarrabeitia
36
63 kgKasputis
38
83 kgRobin
42
63 kgBaguet
45
67 kgEkimov
50
69 kgWauters
51
73 kgDuclos-Lassalle
56
73 kgBrochard
66
68 kgVan Petegem
69
70 kgScirea
71
80 kg
3
68 kgZberg
4
72 kgDufaux
6
60 kgMejia
9
63 kgLeMond
11
67 kgEarley
20
62 kgBourguignon
21
72 kgde Vries
23
75 kgVirenque
29
65 kgZarrabeitia
36
63 kgKasputis
38
83 kgRobin
42
63 kgBaguet
45
67 kgEkimov
50
69 kgWauters
51
73 kgDuclos-Lassalle
56
73 kgBrochard
66
68 kgVan Petegem
69
70 kgScirea
71
80 kg
Weight (KG) →
Result →
83
60
3
71
# | Rider | Weight (KG) |
---|---|---|
3 | BUGNO Gianni | 68 |
4 | ZBERG Beat | 72 |
6 | DUFAUX Laurent | 60 |
9 | MEJIA Alvaro | 63 |
11 | LEMOND Greg | 67 |
20 | EARLEY Martin | 62 |
21 | BOURGUIGNON Thierry | 72 |
23 | DE VRIES Gerrit | 75 |
29 | VIRENQUE Richard | 65 |
36 | ZARRABEITIA Mikel | 63 |
38 | KASPUTIS Artūras | 83 |
42 | ROBIN Jean-Cyril | 63 |
45 | BAGUET Serge | 67 |
50 | EKIMOV Viatcheslav | 69 |
51 | WAUTERS Marc | 73 |
56 | DUCLOS-LASSALLE Gilbert | 73 |
66 | BROCHARD Laurent | 68 |
69 | VAN PETEGEM Peter | 70 |
71 | SCIREA Mario | 80 |