Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.7 * weight + 151
This means that on average for every extra kilogram weight a rider loses -1.7 positions in the result.
Forke
1
78 kgBommel
2
75 kgSelig
3
80 kgLisowicz
4
85 kgFlaksis
7
79 kgArndt
9
77.5 kgKiendyś
14
78 kgSkujiņš
17
70 kgKrizek
23
74 kgBenčík
24
73 kgCharucki
36
64 kgRomanik
38
62 kgNagy
42
52 kgGaebel
44
68 kgTybor
47
72 kgMahďar
49
61 kgHaller
53
72 kgKönig
59
62 kgBēcis
62
82 kgWerda
68
66 kgCieślik
76
65 kg
1
78 kgBommel
2
75 kgSelig
3
80 kgLisowicz
4
85 kgFlaksis
7
79 kgArndt
9
77.5 kgKiendyś
14
78 kgSkujiņš
17
70 kgKrizek
23
74 kgBenčík
24
73 kgCharucki
36
64 kgRomanik
38
62 kgNagy
42
52 kgGaebel
44
68 kgTybor
47
72 kgMahďar
49
61 kgHaller
53
72 kgKönig
59
62 kgBēcis
62
82 kgWerda
68
66 kgCieślik
76
65 kg
Weight (KG) →
Result →
85
52
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | FORKE Sebastian | 78 |
2 | BOMMEL Henning | 75 |
3 | SELIG Rüdiger | 80 |
4 | LISOWICZ Tomasz | 85 |
7 | FLAKSIS Andžs | 79 |
9 | ARNDT Nikias | 77.5 |
14 | KIENDYŚ Tomasz | 78 |
17 | SKUJIŅŠ Toms | 70 |
23 | KRIZEK Matthias | 74 |
24 | BENČÍK Petr | 73 |
36 | CHARUCKI Paweł | 64 |
38 | ROMANIK Radosław | 62 |
42 | NAGY Robert | 52 |
44 | GAEBEL Stefan | 68 |
47 | TYBOR Patrik | 72 |
49 | MAHĎAR Martin | 61 |
53 | HALLER Marco | 72 |
59 | KÖNIG Leopold | 62 |
62 | BĒCIS Armands | 82 |
68 | WERDA Maximilian | 66 |
76 | CIEŚLIK Paweł | 65 |