Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 93
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Forke
1
78 kgSelig
3
80 kgRomanik
6
62 kgBommel
8
75 kgBenčík
10
73 kgLisowicz
14
85 kgKrizek
16
74 kgSkujiņš
17
70 kgArndt
21
77.5 kgNagy
26
52 kgFlaksis
32
79 kgGaebel
36
68 kgCharucki
37
64 kgKiendyś
38
78 kgTybor
47
72 kgMahďar
49
61 kgHaller
62
72 kgKönig
64
62 kgBēcis
66
82 kgWerda
68
66 kgCieślik
81
65 kg
1
78 kgSelig
3
80 kgRomanik
6
62 kgBommel
8
75 kgBenčík
10
73 kgLisowicz
14
85 kgKrizek
16
74 kgSkujiņš
17
70 kgArndt
21
77.5 kgNagy
26
52 kgFlaksis
32
79 kgGaebel
36
68 kgCharucki
37
64 kgKiendyś
38
78 kgTybor
47
72 kgMahďar
49
61 kgHaller
62
72 kgKönig
64
62 kgBēcis
66
82 kgWerda
68
66 kgCieślik
81
65 kg
Weight (KG) →
Result →
85
52
1
81
# | Rider | Weight (KG) |
---|---|---|
1 | FORKE Sebastian | 78 |
3 | SELIG Rüdiger | 80 |
6 | ROMANIK Radosław | 62 |
8 | BOMMEL Henning | 75 |
10 | BENČÍK Petr | 73 |
14 | LISOWICZ Tomasz | 85 |
16 | KRIZEK Matthias | 74 |
17 | SKUJIŅŠ Toms | 70 |
21 | ARNDT Nikias | 77.5 |
26 | NAGY Robert | 52 |
32 | FLAKSIS Andžs | 79 |
36 | GAEBEL Stefan | 68 |
37 | CHARUCKI Paweł | 64 |
38 | KIENDYŚ Tomasz | 78 |
47 | TYBOR Patrik | 72 |
49 | MAHĎAR Martin | 61 |
62 | HALLER Marco | 72 |
64 | KÖNIG Leopold | 62 |
66 | BĒCIS Armands | 82 |
68 | WERDA Maximilian | 66 |
81 | CIEŚLIK Paweł | 65 |