Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Zberg
1
72 kgHeulot
4
69 kgDufaux
5
60 kgCapelle
11
73 kgKoerts
12
78 kgMoreau
13
77 kgMoncassin
14
73 kgAldag
17
75 kgRobin
25
63 kgVerstrepen
33
66 kgLeMond
39
67 kgMeinert-Nielsen
48
73 kgDurand
50
76 kgPeers
53
73 kgVan Petegem
54
70 kgWampers
57
82 kgDomínguez
64
67 kgNijdam
68
70 kg
1
72 kgHeulot
4
69 kgDufaux
5
60 kgCapelle
11
73 kgKoerts
12
78 kgMoreau
13
77 kgMoncassin
14
73 kgAldag
17
75 kgRobin
25
63 kgVerstrepen
33
66 kgLeMond
39
67 kgMeinert-Nielsen
48
73 kgDurand
50
76 kgPeers
53
73 kgVan Petegem
54
70 kgWampers
57
82 kgDomínguez
64
67 kgNijdam
68
70 kg
Weight (KG) →
Result →
82
60
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | ZBERG Beat | 72 |
4 | HEULOT Stéphane | 69 |
5 | DUFAUX Laurent | 60 |
11 | CAPELLE Christophe | 73 |
12 | KOERTS Jans | 78 |
13 | MOREAU Francis | 77 |
14 | MONCASSIN Frédéric | 73 |
17 | ALDAG Rolf | 75 |
25 | ROBIN Jean-Cyril | 63 |
33 | VERSTREPEN Johan | 66 |
39 | LEMOND Greg | 67 |
48 | MEINERT-NIELSEN Peter | 73 |
50 | DURAND Jacky | 76 |
53 | PEERS Chris | 73 |
54 | VAN PETEGEM Peter | 70 |
57 | WAMPERS Jean-Marie | 82 |
64 | DOMÍNGUEZ Manuel Jorge | 67 |
68 | NIJDAM Jelle | 70 |