Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Gate
1
71 kgViganò
2
67 kgde Man
4
68 kgPöstlberger
5
70 kgKruopis
6
80 kgMalucelli
8
68 kgIrvine
9
80 kgTizza
10
58 kgEdmondson
13
62 kgMullen
18
77 kgDunne
19
88 kgLaverack
22
62 kgGesbert
24
63 kgPettiti
25
71 kgHolmes
26
67 kgBenetseder
28
65 kgJourniaux
32
63 kgMackinnon
33
75 kgSchönberger
38
64 kgSleurs
40
68 kg
1
71 kgViganò
2
67 kgde Man
4
68 kgPöstlberger
5
70 kgKruopis
6
80 kgMalucelli
8
68 kgIrvine
9
80 kgTizza
10
58 kgEdmondson
13
62 kgMullen
18
77 kgDunne
19
88 kgLaverack
22
62 kgGesbert
24
63 kgPettiti
25
71 kgHolmes
26
67 kgBenetseder
28
65 kgJourniaux
32
63 kgMackinnon
33
75 kgSchönberger
38
64 kgSleurs
40
68 kg
Weight (KG) →
Result →
88
58
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | GATE Aaron | 71 |
2 | VIGANÒ Davide | 67 |
4 | DE MAN Jaap | 68 |
5 | PÖSTLBERGER Lukas | 70 |
6 | KRUOPIS Aidis | 80 |
8 | MALUCELLI Matteo | 68 |
9 | IRVINE Martyn | 80 |
10 | TIZZA Marco | 58 |
13 | EDMONDSON Joshua | 62 |
18 | MULLEN Ryan | 77 |
19 | DUNNE Conor | 88 |
22 | LAVERACK Edward | 62 |
24 | GESBERT Élie | 63 |
25 | PETTITI Alessandro | 71 |
26 | HOLMES Matthew | 67 |
28 | BENETSEDER Josef | 65 |
32 | JOURNIAUX Axel | 63 |
33 | MACKINNON Sean | 75 |
38 | SCHÖNBERGER Sebastian | 64 |
40 | SLEURS Christophe | 68 |