Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Vastaranta
1
63 kgIglinskiy
2
67 kgHeijboer
3
78 kgKozontchuk
4
75 kgWeening
6
68 kgVan Hecke
9
69 kgMcCarty
13
68 kgElijzen
14
80 kgShpilevsky
15
78 kgFirsanov
22
58 kgHovelijnck
23
75 kgRenders
24
63 kgPauwels
28
60 kgMoinard
29
69 kgBazayev
32
62 kgDmitriyev
33
69 kgScheuneman
41
75 kgVansummeren
42
79 kgWeylandt
48
72 kgClement
53
66 kg
1
63 kgIglinskiy
2
67 kgHeijboer
3
78 kgKozontchuk
4
75 kgWeening
6
68 kgVan Hecke
9
69 kgMcCarty
13
68 kgElijzen
14
80 kgShpilevsky
15
78 kgFirsanov
22
58 kgHovelijnck
23
75 kgRenders
24
63 kgPauwels
28
60 kgMoinard
29
69 kgBazayev
32
62 kgDmitriyev
33
69 kgScheuneman
41
75 kgVansummeren
42
79 kgWeylandt
48
72 kgClement
53
66 kg
Weight (KG) →
Result →
80
58
1
53
# | Rider | Weight (KG) |
---|---|---|
1 | VASTARANTA Jukka | 63 |
2 | IGLINSKIY Maxim | 67 |
3 | HEIJBOER Mathieu | 78 |
4 | KOZONTCHUK Dmitry | 75 |
6 | WEENING Pieter | 68 |
9 | VAN HECKE Preben | 69 |
13 | MCCARTY Jonathan Patrick | 68 |
14 | ELIJZEN Michiel | 80 |
15 | SHPILEVSKY Boris | 78 |
22 | FIRSANOV Sergey | 58 |
23 | HOVELIJNCK Kurt | 75 |
24 | RENDERS Sven | 63 |
28 | PAUWELS Kevin | 60 |
29 | MOINARD Amaël | 69 |
32 | BAZAYEV Assan | 62 |
33 | DMITRIYEV Valeriy | 69 |
41 | SCHEUNEMAN Niels | 75 |
42 | VANSUMMEREN Johan | 79 |
48 | WEYLANDT Wouter | 72 |
53 | CLEMENT Stef | 66 |