Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.7 * weight - 146
This means that on average for every extra kilogram weight a rider loses 2.7 positions in the result.
Wyss
1
63 kgvan Garderen
2
72 kgKostyuk
3
66 kgVandborg
5
75 kgStetina
6
63 kgGastauer
9
73 kgNaibo
19
62 kgGretsch
35
69 kgRenev
38
68 kgBeyer
42
63 kgIglinskiy
44
68 kgDmitriyev
57
69 kgBarton
61
77 kgLigthart
69
72 kgDidier
70
68 kgDrucker
72
75 kgFlammang
77
80 kgTleubayev
79
70 kgRaimbekov
82
66 kgKondrut
99
79 kg
1
63 kgvan Garderen
2
72 kgKostyuk
3
66 kgVandborg
5
75 kgStetina
6
63 kgGastauer
9
73 kgNaibo
19
62 kgGretsch
35
69 kgRenev
38
68 kgBeyer
42
63 kgIglinskiy
44
68 kgDmitriyev
57
69 kgBarton
61
77 kgLigthart
69
72 kgDidier
70
68 kgDrucker
72
75 kgFlammang
77
80 kgTleubayev
79
70 kgRaimbekov
82
66 kgKondrut
99
79 kg
Weight (KG) →
Result →
80
62
1
99
# | Rider | Weight (KG) |
---|---|---|
1 | WYSS Marcel | 63 |
2 | VAN GARDEREN Tejay | 72 |
3 | KOSTYUK Denys | 66 |
5 | VANDBORG Brian Bach | 75 |
6 | STETINA Peter | 63 |
9 | GASTAUER Ben | 73 |
19 | NAIBO Carl | 62 |
35 | GRETSCH Patrick | 69 |
38 | RENEV Sergey | 68 |
42 | BEYER Chad | 63 |
44 | IGLINSKIY Valentin | 68 |
57 | DMITRIYEV Valeriy | 69 |
61 | BARTON Chris | 77 |
69 | LIGTHART Pim | 72 |
70 | DIDIER Laurent | 68 |
72 | DRUCKER Jempy | 75 |
77 | FLAMMANG Tom | 80 |
79 | TLEUBAYEV Ruslan | 70 |
82 | RAIMBEKOV Bolat | 66 |
99 | KONDRUT Vitaliy | 79 |