Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Mein
1
71 kgHeremans
2
68 kgde Jong
6
72 kgNegrente
7
65 kgRasenberg
8
78 kgFox
10
71 kgHaverdings
11
63 kgKukrle
15
73 kgOttema
16
77 kgGonov
18
76 kgKramer
20
74 kgJochum
22
76 kgWeulink
27
62 kgGodfroid
28
66 kgWiggins
30
75 kgKingston
31
76 kgBárta
35
67 kgUmba
36
58 kg
1
71 kgHeremans
2
68 kgde Jong
6
72 kgNegrente
7
65 kgRasenberg
8
78 kgFox
10
71 kgHaverdings
11
63 kgKukrle
15
73 kgOttema
16
77 kgGonov
18
76 kgKramer
20
74 kgJochum
22
76 kgWeulink
27
62 kgGodfroid
28
66 kgWiggins
30
75 kgKingston
31
76 kgBárta
35
67 kgUmba
36
58 kg
Weight (KG) →
Result →
78
58
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | MEIN Thomas | 71 |
2 | HEREMANS Joppe | 68 |
6 | DE JONG Timo | 72 |
7 | NEGRENTE Mattia | 65 |
8 | RASENBERG Martijn | 78 |
10 | FOX Matthew | 71 |
11 | HAVERDINGS David | 63 |
15 | KUKRLE Michael | 73 |
16 | OTTEMA Rick | 77 |
18 | GONOV Lev | 76 |
20 | KRAMER Jesse | 74 |
22 | JOCHUM Ben Felix | 76 |
27 | WEULINK Meindert | 62 |
28 | GODFROID Olivier | 66 |
30 | WIGGINS Ben | 75 |
31 | KINGSTON Matthew | 76 |
35 | BÁRTA Martin | 67 |
36 | UMBA Santiago | 58 |