Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Dernies
5
75 kgDemierre
6
70 kgHodge
8
74 kgNijdam
15
70 kgVerstrepen
17
66 kgCipollini
18
77 kgPeeters
23
76 kgLilholt
29
72 kgde Vries
32
75 kgVeenstra
33
70 kgDufaux
35
60 kgHundertmarck
42
72 kgBölts
48
73 kgArntz
49
70 kgBomans
53
74 kgGianetti
57
62 kgBallerini
58
78 kgImboden
59
70 kgUgrumov
60
58 kgPoli
61
87 kgRichard
66
67 kgJaskuła
69
76 kgRué
77
74 kg
5
75 kgDemierre
6
70 kgHodge
8
74 kgNijdam
15
70 kgVerstrepen
17
66 kgCipollini
18
77 kgPeeters
23
76 kgLilholt
29
72 kgde Vries
32
75 kgVeenstra
33
70 kgDufaux
35
60 kgHundertmarck
42
72 kgBölts
48
73 kgArntz
49
70 kgBomans
53
74 kgGianetti
57
62 kgBallerini
58
78 kgImboden
59
70 kgUgrumov
60
58 kgPoli
61
87 kgRichard
66
67 kgJaskuła
69
76 kgRué
77
74 kg
Weight (KG) →
Result →
87
58
5
77
# | Rider | Weight (KG) |
---|---|---|
5 | DERNIES Michel | 75 |
6 | DEMIERRE Serge | 70 |
8 | HODGE Stephen | 74 |
15 | NIJDAM Jelle | 70 |
17 | VERSTREPEN Johan | 66 |
18 | CIPOLLINI Mario | 77 |
23 | PEETERS Wilfried | 76 |
29 | LILHOLT Søren | 72 |
32 | DE VRIES Gerrit | 75 |
33 | VEENSTRA Wiebren | 70 |
35 | DUFAUX Laurent | 60 |
42 | HUNDERTMARCK Kai | 72 |
48 | BÖLTS Udo | 73 |
49 | ARNTZ Marcel | 70 |
53 | BOMANS Carlo | 74 |
57 | GIANETTI Mauro | 62 |
58 | BALLERINI Franco | 78 |
59 | IMBODEN Heinz | 70 |
60 | UGRUMOV Piotr | 58 |
61 | POLI Eros | 87 |
66 | RICHARD Pascal | 67 |
69 | JASKUŁA Zenon | 76 |
77 | RUÉ Gérard | 74 |