Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 56
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Cherel
1
65 kgSchär
2
78 kgJacobs
3
68 kgBole
4
69 kgDi Grégorio
6
67 kgBakelants
7
67 kgVelits
8
63 kgSchleck
9
68 kgMeersman
11
63 kgVanendert
12
62 kgVelits
15
70 kgLund
21
65 kgŠpilak
22
68 kgBoom
23
75 kgBiesek
26
66 kgVachon
30
65 kgSeeldraeyers
33
60 kgWilmann
41
69 kgKlemme
42
72 kgVantomme
45
63 kgBodnar
51
77 kgDrucker
60
75 kgKrettly
64
72 kg
1
65 kgSchär
2
78 kgJacobs
3
68 kgBole
4
69 kgDi Grégorio
6
67 kgBakelants
7
67 kgVelits
8
63 kgSchleck
9
68 kgMeersman
11
63 kgVanendert
12
62 kgVelits
15
70 kgLund
21
65 kgŠpilak
22
68 kgBoom
23
75 kgBiesek
26
66 kgVachon
30
65 kgSeeldraeyers
33
60 kgWilmann
41
69 kgKlemme
42
72 kgVantomme
45
63 kgBodnar
51
77 kgDrucker
60
75 kgKrettly
64
72 kg
Weight (KG) →
Result →
78
60
1
64
# | Rider | Weight (KG) |
---|---|---|
1 | CHEREL Mikaël | 65 |
2 | SCHÄR Michael | 78 |
3 | JACOBS Pieter | 68 |
4 | BOLE Grega | 69 |
6 | DI GRÉGORIO Rémy | 67 |
7 | BAKELANTS Jan | 67 |
8 | VELITS Peter | 63 |
9 | SCHLECK Andy | 68 |
11 | MEERSMAN Gianni | 63 |
12 | VANENDERT Jelle | 62 |
15 | VELITS Martin | 70 |
21 | LUND Anders | 65 |
22 | ŠPILAK Simon | 68 |
23 | BOOM Lars | 75 |
26 | BIESEK Szymon | 66 |
30 | VACHON Florian | 65 |
33 | SEELDRAEYERS Kevin | 60 |
41 | WILMANN Frederik | 69 |
42 | KLEMME Dominic | 72 |
45 | VANTOMME Maxime | 63 |
51 | BODNAR Maciej | 77 |
60 | DRUCKER Jempy | 75 |
64 | KRETTLY Jerome | 72 |