Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Benta
1
60 kgBrôco
2
66 kgFernández
3
69 kgMarque
4
68 kgGallego
5
62 kgDueñas
6
61 kgMestre
7
58 kgGuerin
8
64 kgOyarzún
9
66 kgde la Fuente
10
67 kgGrellier
11
65 kgShilov
12
67 kgLivramento
13
55 kgOurselin
15
70 kgIsidoro
16
63 kgPaulinho
17
75 kgSancho
18
61 kgCasimiro
19
62 kgDos Santos
20
62 kg
1
60 kgBrôco
2
66 kgFernández
3
69 kgMarque
4
68 kgGallego
5
62 kgDueñas
6
61 kgMestre
7
58 kgGuerin
8
64 kgOyarzún
9
66 kgde la Fuente
10
67 kgGrellier
11
65 kgShilov
12
67 kgLivramento
13
55 kgOurselin
15
70 kgIsidoro
16
63 kgPaulinho
17
75 kgSancho
18
61 kgCasimiro
19
62 kgDos Santos
20
62 kg
Weight (KG) →
Result →
75
55
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | BENTA João | 60 |
2 | BRÔCO Hernâni | 66 |
3 | FERNÁNDEZ Delio | 69 |
4 | MARQUE Alejandro Manuel | 68 |
5 | GALLEGO Alberto | 62 |
6 | DUEÑAS Moisés | 61 |
7 | MESTRE Ricardo | 58 |
8 | GUERIN Alexis | 64 |
9 | OYARZÚN Carlos Iván | 66 |
10 | DE LA FUENTE David | 67 |
11 | GRELLIER Fabien | 65 |
12 | SHILOV Sergey | 67 |
13 | LIVRAMENTO David | 55 |
15 | OURSELIN Paul | 70 |
16 | ISIDORO Micael | 63 |
17 | PAULINHO Pedro | 75 |
18 | SANCHO Hugo | 61 |
19 | CASIMIRO Henrique | 62 |
20 | DOS SANTOS Virgílio Martins | 62 |