Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Tanneveau
1
66 kgDebruyckere
2
71 kgLesueur
3
74 kgMarie
4
80 kgGoasmat
6
60 kgDubois
7
67 kgBerty
8
76 kgAbbes
9
74 kgMaye
10
67 kgChavard
11
84 kgCorallini
12
63 kgPassat
13
71 kgLaurent
15
77 kgBeliard
18
84 kgGalateau
19
76 kgHubatz
20
80 kgOubron
24
69 kgWalle
25
64 kgSpapperi
28
70 kgLemarié
31
68 kgPagès
32
70 kg
1
66 kgDebruyckere
2
71 kgLesueur
3
74 kgMarie
4
80 kgGoasmat
6
60 kgDubois
7
67 kgBerty
8
76 kgAbbes
9
74 kgMaye
10
67 kgChavard
11
84 kgCorallini
12
63 kgPassat
13
71 kgLaurent
15
77 kgBeliard
18
84 kgGalateau
19
76 kgHubatz
20
80 kgOubron
24
69 kgWalle
25
64 kgSpapperi
28
70 kgLemarié
31
68 kgPagès
32
70 kg
Weight (KG) →
Result →
84
60
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | TANNEVEAU Robert | 66 |
2 | DEBRUYCKERE Arthur | 71 |
3 | LESUEUR Raoul | 74 |
4 | MARIE Yvan | 80 |
6 | GOASMAT Jean-Marie | 60 |
7 | DUBOIS Gabriel | 67 |
8 | BERTY Charles | 76 |
9 | ABBES Abdel-Kader | 74 |
10 | MAYE Paul | 67 |
11 | CHAVARD Guillaume | 84 |
12 | CORALLINI René-Paul | 63 |
13 | PASSAT Raymond | 71 |
15 | LAURENT Marcel | 77 |
18 | BELIARD Robert | 84 |
19 | GALATEAU Fabien | 76 |
20 | HUBATZ Georges | 80 |
24 | OUBRON Robert | 69 |
25 | WALLE Marcel | 64 |
28 | SPAPPERI Pierre | 70 |
31 | LEMARIÉ Raymond | 68 |
32 | PAGÈS Edmond | 70 |