Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Berteau
3
57 kgTruyen
5
55 kgVandenbulcke
6
60 kgZanardi
7
56 kgKasper
13
59 kgKuijpers
14
73 kgVerdonschot
15
52 kgDe Wilde
16
62 kgBoogaard
17
59 kgBeuling
20
65 kgRoy
22
66 kgWilliams
23
66 kgAlzini
27
64 kgGreenwood
30
60 kgDocx
32
52 kgLee
37
53 kgPeeters
40
54 kgTacey
43
62 kgFranck
64
51 kgPikulik
72
54 kgCastrique
73
63 kgLópez
76
67 kgDemey
84
56 kgLacompte
85
65 kg
3
57 kgTruyen
5
55 kgVandenbulcke
6
60 kgZanardi
7
56 kgKasper
13
59 kgKuijpers
14
73 kgVerdonschot
15
52 kgDe Wilde
16
62 kgBoogaard
17
59 kgBeuling
20
65 kgRoy
22
66 kgWilliams
23
66 kgAlzini
27
64 kgGreenwood
30
60 kgDocx
32
52 kgLee
37
53 kgPeeters
40
54 kgTacey
43
62 kgFranck
64
51 kgPikulik
72
54 kgCastrique
73
63 kgLópez
76
67 kgDemey
84
56 kgLacompte
85
65 kg
Weight (KG) →
Result →
73
51
3
85
# | Rider | Weight (KG) |
---|---|---|
3 | BERTEAU Victoire | 57 |
5 | TRUYEN Marthe | 55 |
6 | VANDENBULCKE Jesse | 60 |
7 | ZANARDI Silvia | 56 |
13 | KASPER Romy | 59 |
14 | KUIJPERS Evy | 73 |
15 | VERDONSCHOT Laura | 52 |
16 | DE WILDE Julie | 62 |
17 | BOOGAARD Maaike | 59 |
20 | BEULING Femke | 65 |
22 | ROY Sarah | 66 |
23 | WILLIAMS Lily | 66 |
27 | ALZINI Martina | 64 |
30 | GREENWOOD Monica | 60 |
32 | DOCX Mieke | 52 |
37 | LEE Lucy | 53 |
40 | PEETERS Jinse | 54 |
43 | TACEY April | 62 |
64 | FRANCK Alicia | 51 |
72 | PIKULIK Daria | 54 |
73 | CASTRIQUE Alana | 63 |
76 | LÓPEZ Marga | 67 |
84 | DEMEY Valerie | 56 |
85 | LACOMPTE Amber | 65 |