Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 16
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
van Dijk
1
74 kgPollack
2
77 kgCasper
3
69 kgEisel
4
74 kgde Jongh
5
76 kgArvesen
6
74 kgClerc
7
71 kgRadochla
8
70 kgGardeyn
10
75 kgKopp
11
68 kgFlammang
13
80 kgCancellara
14
80 kgMcGee
17
72 kgKrivtsov
18
72 kgCapelle
20
75 kgVoskamp
21
75 kgHayman
22
78 kgKoerts
23
78 kgPozzato
24
73 kgNazon
25
74 kgRich
26
82 kgde Groot
27
65 kgSeigneur
28
71 kgKasputis
31
83 kg
1
74 kgPollack
2
77 kgCasper
3
69 kgEisel
4
74 kgde Jongh
5
76 kgArvesen
6
74 kgClerc
7
71 kgRadochla
8
70 kgGardeyn
10
75 kgKopp
11
68 kgFlammang
13
80 kgCancellara
14
80 kgMcGee
17
72 kgKrivtsov
18
72 kgCapelle
20
75 kgVoskamp
21
75 kgHayman
22
78 kgKoerts
23
78 kgPozzato
24
73 kgNazon
25
74 kgRich
26
82 kgde Groot
27
65 kgSeigneur
28
71 kgKasputis
31
83 kg
Weight (KG) →
Result →
83
65
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DIJK Stefan | 74 |
2 | POLLACK Olaf | 77 |
3 | CASPER Jimmy | 69 |
4 | EISEL Bernhard | 74 |
5 | DE JONGH Steven | 76 |
6 | ARVESEN Kurt-Asle | 74 |
7 | CLERC Aurélien | 71 |
8 | RADOCHLA Steffen | 70 |
10 | GARDEYN Gorik | 75 |
11 | KOPP David | 68 |
13 | FLAMMANG Tom | 80 |
14 | CANCELLARA Fabian | 80 |
17 | MCGEE Bradley | 72 |
18 | KRIVTSOV Yuriy | 72 |
20 | CAPELLE Ludovic | 75 |
21 | VOSKAMP Bart | 75 |
22 | HAYMAN Mathew | 78 |
23 | KOERTS Jans | 78 |
24 | POZZATO Filippo | 73 |
25 | NAZON Jean-Patrick | 74 |
26 | RICH Michael | 82 |
27 | DE GROOT Bram | 65 |
28 | SEIGNEUR Eddy | 71 |
31 | KASPUTIS Artūras | 83 |