Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 21
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Philipsen
1
75 kgHayter
2
70 kgMeeus
4
80 kgJerman
8
67 kgBurnett
11
71 kgGressier
14
67 kgBlummel
15
76 kgHerregodts
18
70 kgDe Pestel
19
74 kgRasch
20
71 kgPogačar
23
66 kgVanoverberghe
32
74 kgWright
33
75 kgVerschaeve
37
62 kgvan Bokhoven
44
79 kgVan Moer
46
79 kgBrunel
51
70 kgHartley
52
62 kgJarc
57
75 kgEekhoff
69
75 kg
1
75 kgHayter
2
70 kgMeeus
4
80 kgJerman
8
67 kgBurnett
11
71 kgGressier
14
67 kgBlummel
15
76 kgHerregodts
18
70 kgDe Pestel
19
74 kgRasch
20
71 kgPogačar
23
66 kgVanoverberghe
32
74 kgWright
33
75 kgVerschaeve
37
62 kgvan Bokhoven
44
79 kgVan Moer
46
79 kgBrunel
51
70 kgHartley
52
62 kgJarc
57
75 kgEekhoff
69
75 kg
Weight (KG) →
Result →
80
62
1
69
# | Rider | Weight (KG) |
---|---|---|
1 | PHILIPSEN Jasper | 75 |
2 | HAYTER Ethan | 70 |
4 | MEEUS Jordi | 80 |
8 | JERMAN Žiga | 67 |
11 | BURNETT Marcus | 71 |
14 | GRESSIER Maxime | 67 |
15 | BLUMMEL Robin | 76 |
18 | HERREGODTS Rune | 70 |
19 | DE PESTEL Sander | 74 |
20 | RASCH Jesper | 71 |
23 | POGAČAR Tadej | 66 |
32 | VANOVERBERGHE Jens | 74 |
33 | WRIGHT Fred | 75 |
37 | VERSCHAEVE Viktor | 62 |
44 | VAN BOKHOVEN Ramon | 79 |
46 | VAN MOER Brent | 79 |
51 | BRUNEL Alexys | 70 |
52 | HARTLEY Adam | 62 |
57 | JARC Aljaž | 75 |
69 | EEKHOFF Nils | 75 |