Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 69
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Van Mechelen
1
78 kgRagilo
3
70 kgKapela
4
70 kgBrennan
7
68 kgPeace
11
64 kgHannes
12
62 kgAskey
18
70 kgPeters
23
75 kgHarasim
24
72 kgLightfoot
27
57 kgvan der Veen
29
66 kgWhitcher
31
71 kgWięczkowski
42
63 kgVerhagen
43
67 kgBolle
44
62 kgŁątkowski
46
68 kgWidar
48
54 kgLukeš
54
70 kgWiggins
62
75 kgUnwin
71
57 kgShmidt
76
76 kg
1
78 kgRagilo
3
70 kgKapela
4
70 kgBrennan
7
68 kgPeace
11
64 kgHannes
12
62 kgAskey
18
70 kgPeters
23
75 kgHarasim
24
72 kgLightfoot
27
57 kgvan der Veen
29
66 kgWhitcher
31
71 kgWięczkowski
42
63 kgVerhagen
43
67 kgBolle
44
62 kgŁątkowski
46
68 kgWidar
48
54 kgLukeš
54
70 kgWiggins
62
75 kgUnwin
71
57 kgShmidt
76
76 kg
Weight (KG) →
Result →
78
54
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | VAN MECHELEN Vlad | 78 |
3 | RAGILO Frank Aron | 70 |
4 | KAPELA Marek | 70 |
7 | BRENNAN Matthew | 68 |
11 | PEACE Oliver | 64 |
12 | HANNES Victor | 62 |
18 | ASKEY Ben | 70 |
23 | PETERS Marvin | 75 |
24 | HARASIM Mihnea-Alexandru | 72 |
27 | LIGHTFOOT Mark | 57 |
29 | VAN DER VEEN Cas | 66 |
31 | WHITCHER Jamie | 71 |
42 | WIĘCZKOWSKI Paweł | 63 |
43 | VERHAGEN Xander | 67 |
44 | BOLLE Bert | 62 |
46 | ŁĄTKOWSKI Dawid | 68 |
48 | WIDAR Jarno | 54 |
54 | LUKEŠ Jan | 70 |
62 | WIGGINS Ben | 75 |
71 | UNWIN Luca | 57 |
76 | SHMIDT Artem | 76 |