Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 51
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Kelly
1
77 kgEarley
5
62 kgBaronchelli
9
72 kgDelgado
11
64 kgRoche
12
74 kgLlach
14
58 kgZoetemelk
15
68 kgMurguialday
31
58 kgChiappucci
37
67 kgFernández
44
68 kgMarcussen
52
70 kgSchepers
59
60 kgAlonso
60
70 kgHoste
75
76 kgYates
76
74 kgDomínguez
79
67 kgNavarro
88
77 kg
1
77 kgEarley
5
62 kgBaronchelli
9
72 kgDelgado
11
64 kgRoche
12
74 kgLlach
14
58 kgZoetemelk
15
68 kgMurguialday
31
58 kgChiappucci
37
67 kgFernández
44
68 kgMarcussen
52
70 kgSchepers
59
60 kgAlonso
60
70 kgHoste
75
76 kgYates
76
74 kgDomínguez
79
67 kgNavarro
88
77 kg
Weight (KG) →
Result →
77
58
1
88
# | Rider | Weight (KG) |
---|---|---|
1 | KELLY Sean | 77 |
5 | EARLEY Martin | 62 |
9 | BARONCHELLI Gianbattista | 72 |
11 | DELGADO Pedro | 64 |
12 | ROCHE Stephen | 74 |
14 | LLACH Joaquin | 58 |
15 | ZOETEMELK Joop | 68 |
31 | MURGUIALDAY Javier | 58 |
37 | CHIAPPUCCI Claudio | 67 |
44 | FERNÁNDEZ Juan | 68 |
52 | MARCUSSEN Jørgen | 70 |
59 | SCHEPERS Eddy | 60 |
60 | ALONSO Marino | 70 |
75 | HOSTE Frank | 76 |
76 | YATES Sean | 74 |
79 | DOMÍNGUEZ Manuel Jorge | 67 |
88 | NAVARRO Francisco | 77 |