Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 68
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Andriato
1
67 kgKrasnov
2
65 kgLiepiņš
3
67 kgKolář
5
90 kgKirsipuu
6
80 kgVasilyev
7
70 kgRäim
9
69 kgLovassy
11
71 kgPütsep
15
69 kgHenttala
17
73 kgBuchmann
23
59 kgDe Patre
25
66 kgLagab
27
63 kgBogdanovičs
35
68 kgArguelyes
39
66 kgMahďar
41
61 kgSergis
53
75 kgBenenati
56
63 kgCaccia
63
70 kgZubov
65
72 kg
1
67 kgKrasnov
2
65 kgLiepiņš
3
67 kgKolář
5
90 kgKirsipuu
6
80 kgVasilyev
7
70 kgRäim
9
69 kgLovassy
11
71 kgPütsep
15
69 kgHenttala
17
73 kgBuchmann
23
59 kgDe Patre
25
66 kgLagab
27
63 kgBogdanovičs
35
68 kgArguelyes
39
66 kgMahďar
41
61 kgSergis
53
75 kgBenenati
56
63 kgCaccia
63
70 kgZubov
65
72 kg
Weight (KG) →
Result →
90
59
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | ANDRIATO Rafael | 67 |
2 | KRASNOV Leonid | 65 |
3 | LIEPIŅŠ Emīls | 67 |
5 | KOLÁŘ Michael | 90 |
6 | KIRSIPUU Jaan | 80 |
7 | VASILYEV Maksym | 70 |
9 | RÄIM Mihkel | 69 |
11 | LOVASSY Krisztián | 71 |
15 | PÜTSEP Erki | 69 |
17 | HENTTALA Joonas | 73 |
23 | BUCHMANN Emanuel | 59 |
25 | DE PATRE Roberto | 66 |
27 | LAGAB Azzedine | 63 |
35 | BOGDANOVIČS Māris | 68 |
39 | ARGUELYES Arkimedes | 66 |
41 | MAHĎAR Martin | 61 |
53 | SERGIS Kaspars | 75 |
56 | BENENATI Cristian | 63 |
63 | CACCIA Diego | 70 |
65 | ZUBOV Matvey | 72 |