Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Argentin
1
66 kgRoche
2
74 kgFignon
6
67 kgMadiot
7
68 kgSchepers
8
60 kgKelly
20
77 kgZoetemelk
28
68 kgBreukink
34
70 kgChiappucci
35
67 kgDe Wolf
42
75 kgvan der Poel
46
70 kgKuiper
51
69 kgDelgado
59
64 kgBruyneel
67
71 kgRiis
69
71 kgde Rooij
73
69 kgIlegems
77
74 kgLilholt
79
72 kgVan Impe
87
59 kgHodge
101
74 kg
1
66 kgRoche
2
74 kgFignon
6
67 kgMadiot
7
68 kgSchepers
8
60 kgKelly
20
77 kgZoetemelk
28
68 kgBreukink
34
70 kgChiappucci
35
67 kgDe Wolf
42
75 kgvan der Poel
46
70 kgKuiper
51
69 kgDelgado
59
64 kgBruyneel
67
71 kgRiis
69
71 kgde Rooij
73
69 kgIlegems
77
74 kgLilholt
79
72 kgVan Impe
87
59 kgHodge
101
74 kg
Weight (KG) →
Result →
77
59
1
101
# | Rider | Weight (KG) |
---|---|---|
1 | ARGENTIN Moreno | 66 |
2 | ROCHE Stephen | 74 |
6 | FIGNON Laurent | 67 |
7 | MADIOT Marc | 68 |
8 | SCHEPERS Eddy | 60 |
20 | KELLY Sean | 77 |
28 | ZOETEMELK Joop | 68 |
34 | BREUKINK Erik | 70 |
35 | CHIAPPUCCI Claudio | 67 |
42 | DE WOLF Fons | 75 |
46 | VAN DER POEL Adrie | 70 |
51 | KUIPER Hennie | 69 |
59 | DELGADO Pedro | 64 |
67 | BRUYNEEL Johan | 71 |
69 | RIIS Bjarne | 71 |
73 | DE ROOIJ Theo | 69 |
77 | ILEGEMS Roger | 74 |
79 | LILHOLT Søren | 72 |
87 | VAN IMPE Lucien | 59 |
101 | HODGE Stephen | 74 |