Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Durbridge
1
78 kgPlapp
2
72 kgWalsh
3
80 kgGilmore
4
70 kgHarper
5
67 kgVine
6
69 kgAgnoletto
7
69 kgBleddyn
8
67 kgHindley
9
60 kgQuick
10
77 kgSchultz
11
62 kgScott
12
80 kgDyball
13
63 kgHopkins
14
74 kgO'Brien
15
79 kgHepburn
20
77 kgStannard
21
74 kgForbes
23
58 kgMarshall
24
65 kg
1
78 kgPlapp
2
72 kgWalsh
3
80 kgGilmore
4
70 kgHarper
5
67 kgVine
6
69 kgAgnoletto
7
69 kgBleddyn
8
67 kgHindley
9
60 kgQuick
10
77 kgSchultz
11
62 kgScott
12
80 kgDyball
13
63 kgHopkins
14
74 kgO'Brien
15
79 kgHepburn
20
77 kgStannard
21
74 kgForbes
23
58 kgMarshall
24
65 kg
Weight (KG) →
Result →
80
58
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | DURBRIDGE Luke | 78 |
2 | PLAPP Luke | 72 |
3 | WALSH Liam | 80 |
4 | GILMORE Brady | 70 |
5 | HARPER Chris | 67 |
6 | VINE Jay | 69 |
7 | AGNOLETTO Blake | 69 |
8 | BLEDDYN Oliver | 67 |
9 | HINDLEY Jai | 60 |
10 | QUICK Blake | 77 |
11 | SCHULTZ Elliot | 62 |
12 | SCOTT Cameron | 80 |
13 | DYBALL Benjamin | 63 |
14 | HOPKINS Dylan | 74 |
15 | O'BRIEN Kelland | 79 |
20 | HEPBURN Michael | 77 |
21 | STANNARD Robert | 74 |
23 | FORBES James | 58 |
24 | MARSHALL Jack | 65 |