Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 53
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Johansen
1
77 kgSkjelmose
2
65 kgLarsen
5
72 kgMalmberg
7
68 kgSander Hansen
8
68 kgSkot-Hansen
9
62 kgWandahl
10
61 kgWacker
12
68 kgHøiberg Klinke
17
65 kgHertz
22
68 kgVosgerau
23
69 kgPrice-Pejtersen
27
83 kgHenneberg
32
67 kgJensen
34
75 kgFoldager
47
69 kgAndersen
61
56 kg
1
77 kgSkjelmose
2
65 kgLarsen
5
72 kgMalmberg
7
68 kgSander Hansen
8
68 kgSkot-Hansen
9
62 kgWandahl
10
61 kgWacker
12
68 kgHøiberg Klinke
17
65 kgHertz
22
68 kgVosgerau
23
69 kgPrice-Pejtersen
27
83 kgHenneberg
32
67 kgJensen
34
75 kgFoldager
47
69 kgAndersen
61
56 kg
Weight (KG) →
Result →
83
56
1
61
# | Rider | Weight (KG) |
---|---|---|
1 | JOHANSEN Julius | 77 |
2 | SKJELMOSE Mattias | 65 |
5 | LARSEN Mathias Alexander Erik | 72 |
7 | MALMBERG Matias | 68 |
8 | SANDER HANSEN Marcus | 68 |
9 | SKOT-HANSEN Aksel Bech | 62 |
10 | WANDAHL Frederik | 61 |
12 | WACKER Ludvig Anton | 68 |
17 | HØIBERG KLINKE Mads | 65 |
22 | HERTZ Benjamin | 68 |
23 | VOSGERAU Søren | 69 |
27 | PRICE-PEJTERSEN Johan | 83 |
32 | HENNEBERG Magnus | 67 |
34 | JENSEN Frederik Irgens | 75 |
47 | FOLDAGER Anders | 69 |
61 | ANDERSEN Sander | 56 |