Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 64
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Johansen
1
77 kgLarsen
2
74 kgStokbro
3
70 kgLyhne
4
61 kgHulgaard
5
73 kgAaskov Pallesen
6
60 kgKongstad
7
75 kgToudal
10
72 kgSalby
12
68 kgHonoré
15
68 kgJensen
17
75 kgNorsgaard
18
88 kgStampe
19
79 kgWallin
21
78 kgBahr
22
63 kgHellemose
28
65 kgKnudsen
32
59 kgSchultz
34
60 kgAndersen
37
56 kgLarsen
44
72 kgVingegaard
46
58 kg
1
77 kgLarsen
2
74 kgStokbro
3
70 kgLyhne
4
61 kgHulgaard
5
73 kgAaskov Pallesen
6
60 kgKongstad
7
75 kgToudal
10
72 kgSalby
12
68 kgHonoré
15
68 kgJensen
17
75 kgNorsgaard
18
88 kgStampe
19
79 kgWallin
21
78 kgBahr
22
63 kgHellemose
28
65 kgKnudsen
32
59 kgSchultz
34
60 kgAndersen
37
56 kgLarsen
44
72 kgVingegaard
46
58 kg
Weight (KG) →
Result →
88
56
1
46
# | Rider | Weight (KG) |
---|---|---|
1 | JOHANSEN Julius | 77 |
2 | LARSEN Niklas | 74 |
3 | STOKBRO Andreas | 70 |
4 | LYHNE Daniel | 61 |
5 | HULGAARD Morten | 73 |
6 | AASKOV PALLESEN Jeppe | 60 |
7 | KONGSTAD Tobias | 75 |
10 | TOUDAL Emil | 72 |
12 | SALBY Alexander | 68 |
15 | HONORÉ Mikkel Frølich | 68 |
17 | JENSEN Frederik Irgens | 75 |
18 | NORSGAARD Mathias | 88 |
19 | STAMPE Daniel | 79 |
21 | WALLIN Rasmus Bøgh | 78 |
22 | BAHR Christian | 63 |
28 | HELLEMOSE Asbjørn | 65 |
32 | KNUDSEN Oliver | 59 |
34 | SCHULTZ Jesper | 60 |
37 | ANDERSEN Sander | 56 |
44 | LARSEN Mathias Alexander Erik | 72 |
46 | VINGEGAARD Jonas | 58 |