Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 96
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Jensen
1
75 kgVosgerau
2
69 kgMengel
5
65 kgPrice-Pejtersen
9
83 kgJohansen
11
77 kgJørgensen
14
68 kgPedersen
16
74 kgFoldager
17
69 kgLarsen
19
72 kgDue Kaspersen
21
76 kgKnudsen
23
59 kgDahl
25
62 kgSander Hansen
26
68 kgGudnitz
27
69 kgKæmpe
35
59 kgLock
36
58 kgHellemose
37
65 kgDehn
42
60 kg
1
75 kgVosgerau
2
69 kgMengel
5
65 kgPrice-Pejtersen
9
83 kgJohansen
11
77 kgJørgensen
14
68 kgPedersen
16
74 kgFoldager
17
69 kgLarsen
19
72 kgDue Kaspersen
21
76 kgKnudsen
23
59 kgDahl
25
62 kgSander Hansen
26
68 kgGudnitz
27
69 kgKæmpe
35
59 kgLock
36
58 kgHellemose
37
65 kgDehn
42
60 kg
Weight (KG) →
Result →
83
58
1
42
# | Rider | Weight (KG) |
---|---|---|
1 | JENSEN Frederik Irgens | 75 |
2 | VOSGERAU Søren | 69 |
5 | MENGEL Nikolaj | 65 |
9 | PRICE-PEJTERSEN Johan | 83 |
11 | JOHANSEN Julius | 77 |
14 | JØRGENSEN Adam Holm | 68 |
16 | PEDERSEN Rasmus Søjberg | 74 |
17 | FOLDAGER Anders | 69 |
19 | LARSEN Mathias Alexander Erik | 72 |
21 | DUE KASPERSEN Kasper | 76 |
23 | KNUDSEN Oliver | 59 |
25 | DAHL Gustav Frederik | 62 |
26 | SANDER HANSEN Marcus | 68 |
27 | GUDNITZ Joshua | 69 |
35 | KÆMPE Stinus Bjerring | 59 |
36 | LOCK Dennis | 58 |
37 | HELLEMOSE Asbjørn | 65 |
42 | DEHN Magnus | 60 |