Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Kelderman
1
65 kgGoos
3
65 kgSchoonbroodt
4
78 kgGmelich Meijling
5
77 kgde Vries
6
70 kgDumoulin
7
69 kgHofland
8
71 kgKoning
9
77 kgBol
10
71 kgvan Baarle
12
78 kgEefting-Bloem
16
75 kgvan Goethem
21
77 kgTeunissen
22
73 kgMinnaard
23
65 kgReinders
24
78.1 kgBosman
31
68 kg
1
65 kgGoos
3
65 kgSchoonbroodt
4
78 kgGmelich Meijling
5
77 kgde Vries
6
70 kgDumoulin
7
69 kgHofland
8
71 kgKoning
9
77 kgBol
10
71 kgvan Baarle
12
78 kgEefting-Bloem
16
75 kgvan Goethem
21
77 kgTeunissen
22
73 kgMinnaard
23
65 kgReinders
24
78.1 kgBosman
31
68 kg
Weight (KG) →
Result →
78.1
65
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | KELDERMAN Wilco | 65 |
3 | GOOS Marc | 65 |
4 | SCHOONBROODT Bob | 78 |
5 | GMELICH MEIJLING Jarno | 77 |
6 | DE VRIES Berden | 70 |
7 | DUMOULIN Tom | 69 |
8 | HOFLAND Moreno | 71 |
9 | KONING Peter | 77 |
10 | BOL Jetse | 71 |
12 | VAN BAARLE Dylan | 78 |
16 | EEFTING-BLOEM Roy | 75 |
21 | VAN GOETHEM Brian | 77 |
22 | TEUNISSEN Mike | 73 |
23 | MINNAARD Marco | 65 |
24 | REINDERS Elmar | 78.1 |
31 | BOSMAN Gert-Jan | 68 |