Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 27
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Reus
1
70 kgLeezer
2
76 kgde Baat
3
66 kgVeelers
4
75 kgvan Emden
5
78 kgGesink
6
70 kgKruijswijk
7
63 kgOostlander
10
78 kgKreder
13
67 kgRuijgh
17
64 kgHuizenga
18
72 kgPoels
25
66 kgDuijn
26
73 kgvan Winden
39
70 kgMollema
47
64 kgBellemakers
48
75 kgvan Amerongen
51
70 kgBoom
55
75 kgTerpstra
57
75 kgTimmer
65
77 kg
1
70 kgLeezer
2
76 kgde Baat
3
66 kgVeelers
4
75 kgvan Emden
5
78 kgGesink
6
70 kgKruijswijk
7
63 kgOostlander
10
78 kgKreder
13
67 kgRuijgh
17
64 kgHuizenga
18
72 kgPoels
25
66 kgDuijn
26
73 kgvan Winden
39
70 kgMollema
47
64 kgBellemakers
48
75 kgvan Amerongen
51
70 kgBoom
55
75 kgTerpstra
57
75 kgTimmer
65
77 kg
Weight (KG) →
Result →
78
63
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | REUS Kai | 70 |
2 | LEEZER Tom | 76 |
3 | DE BAAT Arjen | 66 |
4 | VEELERS Tom | 75 |
5 | VAN EMDEN Jos | 78 |
6 | GESINK Robert | 70 |
7 | KRUIJSWIJK Steven | 63 |
10 | OOSTLANDER Sander | 78 |
13 | KREDER Michel | 67 |
17 | RUIJGH Rob | 64 |
18 | HUIZENGA Jenning | 72 |
25 | POELS Wout | 66 |
26 | DUIJN Huub | 73 |
39 | VAN WINDEN Dennis | 70 |
47 | MOLLEMA Bauke | 64 |
48 | BELLEMAKERS Dirk | 75 |
51 | VAN AMERONGEN Thijs | 70 |
55 | BOOM Lars | 75 |
57 | TERPSTRA Niki | 75 |
65 | TIMMER Albert | 77 |