Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Kruijswijk
1
63 kgSinkeldam
2
77 kgvan Poppel
3
78 kgBol
5
71 kgvan Zandbeek
9
72 kgLigthart
13
72 kgKreder
17
71 kgKreder
18
67 kgAriesen
23
70 kgKreder
24
70 kgTerpstra
29
75 kgSlagter
30
57 kgvan den Brand
31
71 kgOckeloen
32
66 kgKeizer
35
72 kgChaigneau
38
80 kgLammertink
40
61 kg
1
63 kgSinkeldam
2
77 kgvan Poppel
3
78 kgBol
5
71 kgvan Zandbeek
9
72 kgLigthart
13
72 kgKreder
17
71 kgKreder
18
67 kgAriesen
23
70 kgKreder
24
70 kgTerpstra
29
75 kgSlagter
30
57 kgvan den Brand
31
71 kgOckeloen
32
66 kgKeizer
35
72 kgChaigneau
38
80 kgLammertink
40
61 kg
Weight (KG) →
Result →
80
57
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | KRUIJSWIJK Steven | 63 |
2 | SINKELDAM Ramon | 77 |
3 | VAN POPPEL Boy | 78 |
5 | BOL Jetse | 71 |
9 | VAN ZANDBEEK Ronan | 72 |
13 | LIGTHART Pim | 72 |
17 | KREDER Wesley | 71 |
18 | KREDER Michel | 67 |
23 | ARIESEN Johim | 70 |
24 | KREDER Raymond | 70 |
29 | TERPSTRA Niki | 75 |
30 | SLAGTER Tom-Jelte | 57 |
31 | VAN DEN BRAND Twan | 71 |
32 | OCKELOEN Jasper | 66 |
35 | KEIZER Martijn | 72 |
38 | CHAIGNEAU Robin | 80 |
40 | LAMMERTINK Maurits | 61 |