Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2 * weight - 84
This means that on average for every extra kilogram weight a rider loses 2 positions in the result.
van Leijen
3
73 kgRooijakkers
14
68 kgDe Schrooder
16
61 kgHonig
29
61 kgHeijboer
30
78 kgBarbé
32
75 kgValentin
33
69 kgMertens
38
67 kgFleming
40
65 kgLangeveld
41
67 kgvan Hummel
46
64 kgde Kort
47
69 kgVeuchelen
48
75 kgCurvers
50
73 kgBellemakers
64
75 kgBoom
81
75 kgRetschke
86
66 kgTerpstra
90
75 kgMaaskant
107
76 kgFlens
108
82 kgHoogerland
111
65 kg
3
73 kgRooijakkers
14
68 kgDe Schrooder
16
61 kgHonig
29
61 kgHeijboer
30
78 kgBarbé
32
75 kgValentin
33
69 kgMertens
38
67 kgFleming
40
65 kgLangeveld
41
67 kgvan Hummel
46
64 kgde Kort
47
69 kgVeuchelen
48
75 kgCurvers
50
73 kgBellemakers
64
75 kgBoom
81
75 kgRetschke
86
66 kgTerpstra
90
75 kgMaaskant
107
76 kgFlens
108
82 kgHoogerland
111
65 kg
Weight (KG) →
Result →
82
61
3
111
# | Rider | Weight (KG) |
---|---|---|
3 | VAN LEIJEN Joost | 73 |
14 | ROOIJAKKERS Piet | 68 |
16 | DE SCHROODER Benny | 61 |
29 | HONIG Reinier | 61 |
30 | HEIJBOER Mathieu | 78 |
32 | BARBÉ Koen | 75 |
33 | VALENTIN Tristan | 69 |
38 | MERTENS Pieter | 67 |
40 | FLEMING Joshua | 65 |
41 | LANGEVELD Sebastian | 67 |
46 | VAN HUMMEL Kenny | 64 |
47 | DE KORT Koen | 69 |
48 | VEUCHELEN Frederik | 75 |
50 | CURVERS Roy | 73 |
64 | BELLEMAKERS Dirk | 75 |
81 | BOOM Lars | 75 |
86 | RETSCHKE Robert | 66 |
90 | TERPSTRA Niki | 75 |
107 | MAASKANT Martijn | 76 |
108 | FLENS Rick | 82 |
111 | HOOGERLAND Johnny | 65 |