Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
De Jonghe
1
69 kgStallaert
3
72 kgHavik
5
66 kgvan der Lijke
6
61 kgVan Keirsbulck
7
89 kgRiesebeek
9
78 kgDe Bie
10
65 kgMarkus
14
75 kgStuyven
17
78 kgDe Clercq
19
67 kgKelderman
20
65 kgTheuns
24
72 kgVan Lerberghe
30
83 kgSeynaeve
34
67 kgGoderis
37
63 kgLampaert
49
75 kgPeyskens
88
69 kgVan Hoecke
93
78 kg
1
69 kgStallaert
3
72 kgHavik
5
66 kgvan der Lijke
6
61 kgVan Keirsbulck
7
89 kgRiesebeek
9
78 kgDe Bie
10
65 kgMarkus
14
75 kgStuyven
17
78 kgDe Clercq
19
67 kgKelderman
20
65 kgTheuns
24
72 kgVan Lerberghe
30
83 kgSeynaeve
34
67 kgGoderis
37
63 kgLampaert
49
75 kgPeyskens
88
69 kgVan Hoecke
93
78 kg
Weight (KG) →
Result →
89
61
1
93
# | Rider | Weight (KG) |
---|---|---|
1 | DE JONGHE Kevin | 69 |
3 | STALLAERT Joeri | 72 |
5 | HAVIK Yoeri | 66 |
6 | VAN DER LIJKE Nick | 61 |
7 | VAN KEIRSBULCK Guillaume | 89 |
9 | RIESEBEEK Oscar | 78 |
10 | DE BIE Sean | 65 |
14 | MARKUS Barry | 75 |
17 | STUYVEN Jasper | 78 |
19 | DE CLERCQ Angelo | 67 |
20 | KELDERMAN Wilco | 65 |
24 | THEUNS Edward | 72 |
30 | VAN LERBERGHE Bert | 83 |
34 | SEYNAEVE Lander | 67 |
37 | GODERIS Jelle | 63 |
49 | LAMPAERT Yves | 75 |
88 | PEYSKENS Dimitri | 69 |
93 | VAN HOECKE Gijs | 78 |