Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 23
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Eeckhout
1
73 kgVierhouten
3
71 kgHelminen
4
74 kgBoucher
6
78 kgCurvers
8
73 kgVan Impe
9
75 kgRooijakkers
10
68 kgvan Hummel
13
64 kgChadwick
15
75 kgVerstrepen
17
66 kgWagner
18
75 kgMaaskant
22
76 kgIngels
24
70 kgVerheyen
25
68 kgMol
26
83 kgDekkers
33
72 kgBellemakers
34
75 kgde Wilde
35
74 kgHeijboer
40
78 kg
1
73 kgVierhouten
3
71 kgHelminen
4
74 kgBoucher
6
78 kgCurvers
8
73 kgVan Impe
9
75 kgRooijakkers
10
68 kgvan Hummel
13
64 kgChadwick
15
75 kgVerstrepen
17
66 kgWagner
18
75 kgMaaskant
22
76 kgIngels
24
70 kgVerheyen
25
68 kgMol
26
83 kgDekkers
33
72 kgBellemakers
34
75 kgde Wilde
35
74 kgHeijboer
40
78 kg
Weight (KG) →
Result →
83
64
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | EECKHOUT Niko | 73 |
3 | VIERHOUTEN Aart | 71 |
4 | HELMINEN Matti | 74 |
6 | BOUCHER David | 78 |
8 | CURVERS Roy | 73 |
9 | VAN IMPE Kevin | 75 |
10 | ROOIJAKKERS Piet | 68 |
13 | VAN HUMMEL Kenny | 64 |
15 | CHADWICK Glen Alan | 75 |
17 | VERSTREPEN Johan | 66 |
18 | WAGNER Robert | 75 |
22 | MAASKANT Martijn | 76 |
24 | INGELS Nick | 70 |
25 | VERHEYEN Geert | 68 |
26 | MOL Wouter | 83 |
33 | DEKKERS Hans | 72 |
34 | BELLEMAKERS Dirk | 75 |
35 | DE WILDE Sjef | 74 |
40 | HEIJBOER Mathieu | 78 |