Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 28
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Enger
3
69 kgGuldhammer
5
66 kgDuijn
6
73 kgBystrøm
7
73 kgSkujiņš
8
70 kgSkjerping
9
71 kgHansen
11
60 kgGardeyn
15
75 kgCort
16
68 kgDžervus
18
77 kgKorsæth
19
84 kgMagnusson
23
71 kgLunke
25
69 kgVangstad
26
70 kgJensen
27
67 kgEiking
30
75 kgKamp
33
74 kgSchoonbroodt
35
78 kgLudvigsson
36
71 kgKragh Andersen
37
73 kg
3
69 kgGuldhammer
5
66 kgDuijn
6
73 kgBystrøm
7
73 kgSkujiņš
8
70 kgSkjerping
9
71 kgHansen
11
60 kgGardeyn
15
75 kgCort
16
68 kgDžervus
18
77 kgKorsæth
19
84 kgMagnusson
23
71 kgLunke
25
69 kgVangstad
26
70 kgJensen
27
67 kgEiking
30
75 kgKamp
33
74 kgSchoonbroodt
35
78 kgLudvigsson
36
71 kgKragh Andersen
37
73 kg
Weight (KG) →
Result →
84
60
3
37
# | Rider | Weight (KG) |
---|---|---|
3 | ENGER Sondre Holst | 69 |
5 | GULDHAMMER Rasmus | 66 |
6 | DUIJN Huub | 73 |
7 | BYSTRØM Sven Erik | 73 |
8 | SKUJIŅŠ Toms | 70 |
9 | SKJERPING Kristoffer | 71 |
11 | HANSEN Jesper | 60 |
15 | GARDEYN Gorik | 75 |
16 | CORT Magnus | 68 |
18 | DŽERVUS Darijus | 77 |
19 | KORSÆTH Truls Engen | 84 |
23 | MAGNUSSON Kim | 71 |
25 | LUNKE Sindre | 69 |
26 | VANGSTAD Andreas | 70 |
27 | JENSEN August | 67 |
30 | EIKING Odd Christian | 75 |
33 | KAMP Alexander | 74 |
35 | SCHOONBROODT Bob | 78 |
36 | LUDVIGSSON Fredrik | 71 |
37 | KRAGH ANDERSEN Søren | 73 |