Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Bruylandts
1
63 kgGarcía Casas
2
63 kgShefer
3
68 kgPiepoli
4
54 kgLiese
5
75 kgHvastija
6
75 kgDekker
7
66 kgWauters
8
73 kgEtxebarria
9
55 kgSerrano
10
63 kgTchmil
11
75 kgKlier
13
72 kgBeltrán
15
60 kgSchaffrath
17
74 kgScheirlinckx
18
67 kgLaguna
19
61 kgDomínguez
21
64 kgMikhaylov
22
74 kgArtetxe
23
61 kgPaolini
24
66 kgCaucchioli
25
68 kgLeipheimer
26
62 kg
1
63 kgGarcía Casas
2
63 kgShefer
3
68 kgPiepoli
4
54 kgLiese
5
75 kgHvastija
6
75 kgDekker
7
66 kgWauters
8
73 kgEtxebarria
9
55 kgSerrano
10
63 kgTchmil
11
75 kgKlier
13
72 kgBeltrán
15
60 kgSchaffrath
17
74 kgScheirlinckx
18
67 kgLaguna
19
61 kgDomínguez
21
64 kgMikhaylov
22
74 kgArtetxe
23
61 kgPaolini
24
66 kgCaucchioli
25
68 kgLeipheimer
26
62 kg
Weight (KG) →
Result →
75
54
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | BRUYLANDTS Dave | 63 |
2 | GARCÍA CASAS Félix Miguel | 63 |
3 | SHEFER Alexandre | 68 |
4 | PIEPOLI Leonardo | 54 |
5 | LIESE Thomas | 75 |
6 | HVASTIJA Martin | 75 |
7 | DEKKER Erik | 66 |
8 | WAUTERS Marc | 73 |
9 | ETXEBARRIA David | 55 |
10 | SERRANO Marcos Antonio | 63 |
11 | TCHMIL Andrei | 75 |
13 | KLIER Andreas | 72 |
15 | BELTRÁN Manuel | 60 |
17 | SCHAFFRATH Jan | 74 |
18 | SCHEIRLINCKX Bert | 67 |
19 | LAGUNA Oscar | 61 |
21 | DOMÍNGUEZ Juan Carlos | 64 |
22 | MIKHAYLOV Gennady | 74 |
23 | ARTETXE Mikel | 61 |
24 | PAOLINI Luca | 66 |
25 | CAUCCHIOLI Pietro | 68 |
26 | LEIPHEIMER Levi | 62 |