Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Horrach
1
70 kgBayarri
3
67 kgMoos
4
64 kgGuerini
5
65 kgFerrío
7
51 kgVeneberg
8
75 kgPereiro
9
67 kgMercado
10
56 kgAmorim
12
67 kgMancebo
13
64 kgPradera
14
66 kgDomínguez
15
64 kgPiepoli
16
54 kgRodríguez
17
58 kgEtxebarria
18
55 kgCasero
19
74 kgEscartín
20
61 kgKarpets
22
79 kgHonchar
23
67 kgJeker
24
72 kgde Groot
25
65 kg
1
70 kgBayarri
3
67 kgMoos
4
64 kgGuerini
5
65 kgFerrío
7
51 kgVeneberg
8
75 kgPereiro
9
67 kgMercado
10
56 kgAmorim
12
67 kgMancebo
13
64 kgPradera
14
66 kgDomínguez
15
64 kgPiepoli
16
54 kgRodríguez
17
58 kgEtxebarria
18
55 kgCasero
19
74 kgEscartín
20
61 kgKarpets
22
79 kgHonchar
23
67 kgJeker
24
72 kgde Groot
25
65 kg
Weight (KG) →
Result →
79
51
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | HORRACH Joan Sebastian | 70 |
3 | BAYARRI Gonzalo | 67 |
4 | MOOS Alexandre | 64 |
5 | GUERINI Giuseppe | 65 |
7 | FERRÍO Jorge | 51 |
8 | VENEBERG Thorwald | 75 |
9 | PEREIRO Óscar | 67 |
10 | MERCADO Juan Miguel | 56 |
12 | AMORIM Gonçalo | 67 |
13 | MANCEBO Francisco | 64 |
14 | PRADERA Mikel | 66 |
15 | DOMÍNGUEZ Juan Carlos | 64 |
16 | PIEPOLI Leonardo | 54 |
17 | RODRÍGUEZ Joaquim | 58 |
18 | ETXEBARRIA David | 55 |
19 | CASERO Rafael | 74 |
20 | ESCARTÍN Fernando | 61 |
22 | KARPETS Vladimir | 79 |
23 | HONCHAR Serhiy | 67 |
24 | JEKER Fabian | 72 |
25 | DE GROOT Bram | 65 |