Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 173
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Vermote
2
74 kgVanoverberghe
3
65 kgWallays
4
77 kgSteels
5
78 kgGmelich Meijling
11
77 kgBruyneel
26
85 kgDeclercq
27
78 kgVermote
28
74 kgHelven
29
74 kgRobert
33
68 kgSalomein
37
80 kgOckeloen
38
66 kgMcEvoy
41
67 kgJanse van Rensburg
47
74 kgRowsell
54
66 kgSleurs
57
68 kgVan der Sande
67
67 kgBaestaens
69
68 kgvan den Brand
130
71 kg
2
74 kgVanoverberghe
3
65 kgWallays
4
77 kgSteels
5
78 kgGmelich Meijling
11
77 kgBruyneel
26
85 kgDeclercq
27
78 kgVermote
28
74 kgHelven
29
74 kgRobert
33
68 kgSalomein
37
80 kgOckeloen
38
66 kgMcEvoy
41
67 kgJanse van Rensburg
47
74 kgRowsell
54
66 kgSleurs
57
68 kgVan der Sande
67
67 kgBaestaens
69
68 kgvan den Brand
130
71 kg
Weight (KG) →
Result →
85
65
2
130
# | Rider | Weight (KG) |
---|---|---|
2 | VERMOTE Julien | 74 |
3 | VANOVERBERGHE Arthur | 65 |
4 | WALLAYS Jelle | 77 |
5 | STEELS Stijn | 78 |
11 | GMELICH MEIJLING Jarno | 77 |
26 | BRUYNEEL Giel | 85 |
27 | DECLERCQ Tim | 78 |
28 | VERMOTE Alphonse | 74 |
29 | HELVEN Sander | 74 |
33 | ROBERT Fréderique | 68 |
37 | SALOMEIN Jarl | 80 |
38 | OCKELOEN Jasper | 66 |
41 | MCEVOY Jonathan | 67 |
47 | JANSE VAN RENSBURG Reinardt | 74 |
54 | ROWSELL Erick | 66 |
57 | SLEURS Christophe | 68 |
67 | VAN DER SANDE Tosh | 67 |
69 | BAESTAENS Vincent | 68 |
130 | VAN DEN BRAND Twan | 71 |