Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Keisse
1
72 kgTerpstra
2
75 kgWiśniowski
3
78 kgLampaert
4
75 kgTheuns
5
72 kgBenoot
6
72 kgRoosen
7
78 kgVan Keirsbulck
8
89 kgVallée
9
79 kgVermeltfoort
10
85 kgMaes
11
78 kgWallays
13
77 kgKreder
14
70 kgVinther
15
68 kgHoogerland
16
65 kgDe Bie
17
65 kgTrentin
18
74 kgTeunissen
19
73 kgvan Goethem
20
77 kg
1
72 kgTerpstra
2
75 kgWiśniowski
3
78 kgLampaert
4
75 kgTheuns
5
72 kgBenoot
6
72 kgRoosen
7
78 kgVan Keirsbulck
8
89 kgVallée
9
79 kgVermeltfoort
10
85 kgMaes
11
78 kgWallays
13
77 kgKreder
14
70 kgVinther
15
68 kgHoogerland
16
65 kgDe Bie
17
65 kgTrentin
18
74 kgTeunissen
19
73 kgvan Goethem
20
77 kg
Weight (KG) →
Result →
89
65
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | KEISSE Iljo | 72 |
2 | TERPSTRA Niki | 75 |
3 | WIŚNIOWSKI Łukasz | 78 |
4 | LAMPAERT Yves | 75 |
5 | THEUNS Edward | 72 |
6 | BENOOT Tiesj | 72 |
7 | ROOSEN Timo | 78 |
8 | VAN KEIRSBULCK Guillaume | 89 |
9 | VALLÉE Boris | 79 |
10 | VERMELTFOORT Coen | 85 |
11 | MAES Nikolas | 78 |
13 | WALLAYS Jelle | 77 |
14 | KREDER Raymond | 70 |
15 | VINTHER Troels Rønning | 68 |
16 | HOOGERLAND Johnny | 65 |
17 | DE BIE Sean | 65 |
18 | TRENTIN Matteo | 74 |
19 | TEUNISSEN Mike | 73 |
20 | VAN GOETHEM Brian | 77 |