Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Quintana
1
58 kgPinot
2
63 kgYates
3
58 kgFormolo
4
62 kgMeintjes
5
58 kgHerrada
6
70 kgSagan
7
78 kgGrmay
8
63 kgRamirez
9
69 kgMoser
10
64 kgLutsenko
11
74 kgArndt
12
77.5 kgKonrad
13
64 kgDurbridge
14
78 kgVillella
15
66 kgPibernik
16
60 kgHepburn
17
77 kgSbaragli
18
74 kgBennett
19
73 kgBarbin
20
60 kg
1
58 kgPinot
2
63 kgYates
3
58 kgFormolo
4
62 kgMeintjes
5
58 kgHerrada
6
70 kgSagan
7
78 kgGrmay
8
63 kgRamirez
9
69 kgMoser
10
64 kgLutsenko
11
74 kgArndt
12
77.5 kgKonrad
13
64 kgDurbridge
14
78 kgVillella
15
66 kgPibernik
16
60 kgHepburn
17
77 kgSbaragli
18
74 kgBennett
19
73 kgBarbin
20
60 kg
Weight (KG) →
Result →
78
58
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | QUINTANA Nairo | 58 |
2 | PINOT Thibaut | 63 |
3 | YATES Adam | 58 |
4 | FORMOLO Davide | 62 |
5 | MEINTJES Louis | 58 |
6 | HERRADA Jesús | 70 |
7 | SAGAN Peter | 78 |
8 | GRMAY Tsgabu | 63 |
9 | RAMIREZ Brayan Steven | 69 |
10 | MOSER Moreno | 64 |
11 | LUTSENKO Alexey | 74 |
12 | ARNDT Nikias | 77.5 |
13 | KONRAD Patrick | 64 |
14 | DURBRIDGE Luke | 78 |
15 | VILLELLA Davide | 66 |
16 | PIBERNIK Luka | 60 |
17 | HEPBURN Michael | 77 |
18 | SBARAGLI Kristian | 74 |
19 | BENNETT Sam | 73 |
20 | BARBIN Enrico | 60 |