Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 31
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Vogels
1
75 kgPiątek
3
71 kgBarry
4
72 kgChmielewski
6
72 kgWacker
7
65 kgPaumier
11
57 kgWohlberg
12
63 kgSinkewitz
13
63 kgZarate
16
70 kgCooke
20
75 kgAggiano
21
63 kgŁukaszewicz
23
63 kgTuft
24
77 kgGilbert
42
73 kgHegreberg
45
72 kgFörster
46
83 kgMcLeod
50
66 kgFraser
52
71 kgCappelle
59
71 kg
1
75 kgPiątek
3
71 kgBarry
4
72 kgChmielewski
6
72 kgWacker
7
65 kgPaumier
11
57 kgWohlberg
12
63 kgSinkewitz
13
63 kgZarate
16
70 kgCooke
20
75 kgAggiano
21
63 kgŁukaszewicz
23
63 kgTuft
24
77 kgGilbert
42
73 kgHegreberg
45
72 kgFörster
46
83 kgMcLeod
50
66 kgFraser
52
71 kgCappelle
59
71 kg
Weight (KG) →
Result →
83
57
1
59
# | Rider | Weight (KG) |
---|---|---|
1 | VOGELS Henk | 75 |
3 | PIĄTEK Zbigniew | 71 |
4 | BARRY Michael | 72 |
6 | CHMIELEWSKI Piotr | 72 |
7 | WACKER Eugen | 65 |
11 | PAUMIER Laurent | 57 |
12 | WOHLBERG Eric | 63 |
13 | SINKEWITZ Patrik | 63 |
16 | ZARATE Jesús | 70 |
20 | COOKE Baden | 75 |
21 | AGGIANO Elio | 63 |
23 | ŁUKASZEWICZ Czesław | 63 |
24 | TUFT Svein | 77 |
42 | GILBERT Martin | 73 |
45 | HEGREBERG Morten | 72 |
46 | FÖRSTER Robert | 83 |
50 | MCLEOD Ian | 66 |
52 | FRASER Gordon | 71 |
59 | CAPPELLE Andy | 71 |