Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 38
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Arndt
1
77.5 kgKoch
8
69 kgCoquard
14
59 kgCampenaerts
16
68 kgDžervus
18
77 kgVan Meirhaeghe
22
71 kgReinhardt
26
72 kgMcLay
32
72 kgWalscheid
38
90 kgSénéchal
47
77 kgvan der Weijst
50
63 kgRaeymaekers
52
68 kgWippert
60
75 kgDvorsky
61
64 kgBoons
80
85 kgMerseburg
81
75 kgVakoč
83
68 kgLammertink
91
68 kgSchiewer
102
70 kg
1
77.5 kgKoch
8
69 kgCoquard
14
59 kgCampenaerts
16
68 kgDžervus
18
77 kgVan Meirhaeghe
22
71 kgReinhardt
26
72 kgMcLay
32
72 kgWalscheid
38
90 kgSénéchal
47
77 kgvan der Weijst
50
63 kgRaeymaekers
52
68 kgWippert
60
75 kgDvorsky
61
64 kgBoons
80
85 kgMerseburg
81
75 kgVakoč
83
68 kgLammertink
91
68 kgSchiewer
102
70 kg
Weight (KG) →
Result →
90
59
1
102
# | Rider | Weight (KG) |
---|---|---|
1 | ARNDT Nikias | 77.5 |
8 | KOCH Michel | 69 |
14 | COQUARD Bryan | 59 |
16 | CAMPENAERTS Victor | 68 |
18 | DŽERVUS Darijus | 77 |
22 | VAN MEIRHAEGHE Jef | 71 |
26 | REINHARDT Theo | 72 |
32 | MCLAY Daniel | 72 |
38 | WALSCHEID Max | 90 |
47 | SÉNÉCHAL Florian | 77 |
50 | VAN DER WEIJST Geert | 63 |
52 | RAEYMAEKERS Mattias | 68 |
60 | WIPPERT Wouter | 75 |
61 | DVORSKY David | 64 |
80 | BOONS Ruben | 85 |
81 | MERSEBURG Dominik | 75 |
83 | VAKOČ Petr | 68 |
91 | LAMMERTINK Steven | 68 |
102 | SCHIEWER Franz | 70 |