Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 69
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
McCabe
4
72 kgCôté
5
74 kgStewart
6
76 kgStrong
7
66 kgConly
8
63 kgFranz
9
62 kgHartig
10
77 kgGranigan
15
76 kgKergozou De La Boessiere
16
74 kgJones
17
82 kgStrong
25
63 kgCastillo
29
72 kgKirby
30
70 kgGervais
31
72 kgBurke
38
67 kgAnderson
47
66 kgClarke
48
68 kgRoth
51
70 kg
4
72 kgCôté
5
74 kgStewart
6
76 kgStrong
7
66 kgConly
8
63 kgFranz
9
62 kgHartig
10
77 kgGranigan
15
76 kgKergozou De La Boessiere
16
74 kgJones
17
82 kgStrong
25
63 kgCastillo
29
72 kgKirby
30
70 kgGervais
31
72 kgBurke
38
67 kgAnderson
47
66 kgClarke
48
68 kgRoth
51
70 kg
Weight (KG) →
Result →
82
62
4
51
# | Rider | Weight (KG) |
---|---|---|
4 | MCCABE Travis | 72 |
5 | CÔTÉ Pier-André | 74 |
6 | STEWART Campbell | 76 |
7 | STRONG Hayden | 66 |
8 | CONLY Lukas | 63 |
9 | FRANZ Marcel | 62 |
10 | HARTIG Evan | 77 |
15 | GRANIGAN Noah | 76 |
16 | KERGOZOU DE LA BOESSIERE Nick | 74 |
17 | JONES Taj | 82 |
25 | STRONG Corbin | 63 |
29 | CASTILLO Ulises Alfredo | 72 |
30 | KIRBY Kyle | 70 |
31 | GERVAIS Laurent | 72 |
38 | BURKE Jack | 67 |
47 | ANDERSON Ryan | 66 |
48 | CLARKE Jonathan | 68 |
51 | ROTH Ryan | 70 |