Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 31
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Bernal
1
60 kgGaudu
2
53 kgMas
3
61 kgDe Plus
4
67 kgMühlberger
5
64 kgCiccone
6
58 kgKämna
7
65 kgBenoot
8
72 kgPolitt
9
80 kgGesbert
10
63 kgMoscon
11
71 kgOurselin
12
70 kgEiking
13
75 kgCosnefroy
14
65 kgGarcía Cortina
15
77 kgWürtz Schmidt
16
70 kgMohorič
17
71 kgGrellier
18
65 kgAsgreen
19
75 kgTurgis
20
70 kgEwan
21
69 kgDe Gendt
22
75 kgJansen
23
83 kg
1
60 kgGaudu
2
53 kgMas
3
61 kgDe Plus
4
67 kgMühlberger
5
64 kgCiccone
6
58 kgKämna
7
65 kgBenoot
8
72 kgPolitt
9
80 kgGesbert
10
63 kgMoscon
11
71 kgOurselin
12
70 kgEiking
13
75 kgCosnefroy
14
65 kgGarcía Cortina
15
77 kgWürtz Schmidt
16
70 kgMohorič
17
71 kgGrellier
18
65 kgAsgreen
19
75 kgTurgis
20
70 kgEwan
21
69 kgDe Gendt
22
75 kgJansen
23
83 kg
Weight (KG) →
Result →
83
53
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | BERNAL Egan | 60 |
2 | GAUDU David | 53 |
3 | MAS Enric | 61 |
4 | DE PLUS Laurens | 67 |
5 | MÜHLBERGER Gregor | 64 |
6 | CICCONE Giulio | 58 |
7 | KÄMNA Lennard | 65 |
8 | BENOOT Tiesj | 72 |
9 | POLITT Nils | 80 |
10 | GESBERT Élie | 63 |
11 | MOSCON Gianni | 71 |
12 | OURSELIN Paul | 70 |
13 | EIKING Odd Christian | 75 |
14 | COSNEFROY Benoît | 65 |
15 | GARCÍA CORTINA Iván | 77 |
16 | WÜRTZ SCHMIDT Mads | 70 |
17 | MOHORIČ Matej | 71 |
18 | GRELLIER Fabien | 65 |
19 | ASGREEN Kasper | 75 |
20 | TURGIS Anthony | 70 |
21 | EWAN Caleb | 69 |
22 | DE GENDT Aimé | 75 |
23 | JANSEN Amund Grøndahl | 83 |