Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Beuchat
1
62 kgCrawford
2
59 kgRoe
3
66 kgShimizu
4
60 kgPark
5
73 kgFukushima
9
62 kgVenter
10
70 kgFeng
12
69 kgPasseron
13
73 kgJanse van Rensburg
14
63 kgChoe
15
63 kgJang
21
64 kgvan Bon
30
72 kgWong
35
65 kgJang
44
64 kgSeo
48
66 kgKhalmuratov
49
68 kgTang
53
62 kg
1
62 kgCrawford
2
59 kgRoe
3
66 kgShimizu
4
60 kgPark
5
73 kgFukushima
9
62 kgVenter
10
70 kgFeng
12
69 kgPasseron
13
73 kgJanse van Rensburg
14
63 kgChoe
15
63 kgJang
21
64 kgvan Bon
30
72 kgWong
35
65 kgJang
44
64 kgSeo
48
66 kgKhalmuratov
49
68 kgTang
53
62 kg
Weight (KG) →
Result →
73
59
1
53
# | Rider | Weight (KG) |
---|---|---|
1 | BEUCHAT Roger | 62 |
2 | CRAWFORD Jai | 59 |
3 | ROE Timothy | 66 |
4 | SHIMIZU Miyataka | 60 |
5 | PARK Sung Baek | 73 |
9 | FUKUSHIMA Shinichi | 62 |
10 | VENTER Jaco | 70 |
12 | FENG Chun Kai | 69 |
13 | PASSERON Aurélien | 73 |
14 | JANSE VAN RENSBURG Jacques | 63 |
15 | CHOE Hyeong Min | 63 |
21 | JANG Kyung-Gu | 64 |
30 | VAN BON Léon | 72 |
35 | WONG Kam-Po | 65 |
44 | JANG Chan Jae | 64 |
48 | SEO Joon Yong | 66 |
49 | KHALMURATOV Muradjan | 68 |
53 | TANG Wang Yip | 62 |