Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Mizurov
1
68 kgMiyazawa
2
61 kgFukushima
3
62 kgWong
4
65 kgShushemoin
5
62 kgMukaigawa
6
64 kgSano
10
76 kgSuzuki
12
60 kgJiang
13
71 kgHatanaka
14
72 kgFeng
18
69 kgChan
20
70 kgNakajima
21
64 kgTsuji
22
62 kgMasuda
24
63 kgTleubayev
25
70 kgAbe
27
67 kgSuzuki
31
57 kgUchima
35
63 kgCheung
36
59 kgKosaka
37
62 kgWu
41
68 kgYamamoto
48
62 kg
1
68 kgMiyazawa
2
61 kgFukushima
3
62 kgWong
4
65 kgShushemoin
5
62 kgMukaigawa
6
64 kgSano
10
76 kgSuzuki
12
60 kgJiang
13
71 kgHatanaka
14
72 kgFeng
18
69 kgChan
20
70 kgNakajima
21
64 kgTsuji
22
62 kgMasuda
24
63 kgTleubayev
25
70 kgAbe
27
67 kgSuzuki
31
57 kgUchima
35
63 kgCheung
36
59 kgKosaka
37
62 kgWu
41
68 kgYamamoto
48
62 kg
Weight (KG) →
Result →
76
57
1
48
# | Rider | Weight (KG) |
---|---|---|
1 | MIZUROV Andrey | 68 |
2 | MIYAZAWA Takashi | 61 |
3 | FUKUSHIMA Shinichi | 62 |
4 | WONG Kam-Po | 65 |
5 | SHUSHEMOIN Alexandr | 62 |
6 | MUKAIGAWA Naoki | 64 |
10 | SANO Junya | 76 |
12 | SUZUKI Shinri | 60 |
13 | JIANG Kun | 71 |
14 | HATANAKA Yusuke | 72 |
18 | FENG Chun Kai | 69 |
20 | CHAN Chun Hing | 70 |
21 | NAKAJIMA Yasuharu | 64 |
22 | TSUJI Yoshimitsu | 62 |
24 | MASUDA Nariyuki | 63 |
25 | TLEUBAYEV Ruslan | 70 |
27 | ABE Yoshiyuki | 67 |
31 | SUZUKI Yuzuru | 57 |
35 | UCHIMA Kohei | 63 |
36 | CHEUNG King Lok | 59 |
37 | KOSAKA Hikaru | 62 |
41 | WU Kin San | 68 |
48 | YAMAMOTO Genki | 62 |