Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Hulgaard
1
73 kgVan Breussegem
2
68 kgBouts
3
62 kgGerts
4
71 kgPearson
5
53 kgPellaud
6
70 kgHindsgaul
7
67 kgRavanelli
8
66 kgTronet
10
67 kgPrice-Pejtersen
11
77 kgHavik
12
73 kgMunk
13
67 kgBenfatto
14
71 kgNaudts
20
60 kgBisolti
21
58 kgBusato
24
67 kgMcDunphy
26
70 kgChristensen
28
63 kgStedman
30
54 kgSpreafico
35
69 kg
1
73 kgVan Breussegem
2
68 kgBouts
3
62 kgGerts
4
71 kgPearson
5
53 kgPellaud
6
70 kgHindsgaul
7
67 kgRavanelli
8
66 kgTronet
10
67 kgPrice-Pejtersen
11
77 kgHavik
12
73 kgMunk
13
67 kgBenfatto
14
71 kgNaudts
20
60 kgBisolti
21
58 kgBusato
24
67 kgMcDunphy
26
70 kgChristensen
28
63 kgStedman
30
54 kgSpreafico
35
69 kg
Weight (KG) →
Result →
77
53
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | HULGAARD Morten | 73 |
2 | VAN BREUSSEGEM Elias | 68 |
3 | BOUTS Jordy | 62 |
4 | GERTS Floris | 71 |
5 | PEARSON Daniel | 53 |
6 | PELLAUD Simon | 70 |
7 | HINDSGAUL Jacob | 67 |
8 | RAVANELLI Simone | 66 |
10 | TRONET Steven | 67 |
11 | PRICE-PEJTERSEN Johan | 77 |
12 | HAVIK Piotr | 73 |
13 | MUNK Steffen | 67 |
14 | BENFATTO Marco | 71 |
20 | NAUDTS Thomas | 60 |
21 | BISOLTI Alessandro | 58 |
24 | BUSATO Matteo | 67 |
26 | MCDUNPHY Conn | 70 |
28 | CHRISTENSEN Ryan | 63 |
30 | STEDMAN Maximilian | 54 |
35 | SPREAFICO Matteo | 69 |