Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 17
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Mortensen
1
70 kgPfingsten
2
69 kgSlik
4
71 kgHansen
5
60 kgKlostergaard
6
69 kgVandyck
8
64 kgCharteau
12
67 kgSilvestre
15
78 kgHurel
16
66 kgKüng
17
83 kgLudvigsson
18
71 kgCornu
19
66 kgBizhigitov
20
76 kgvan Baarle
24
78 kgValgren
25
71 kgCort
27
68 kgDillier
28
75 kgScully
30
85 kgNikolaev
31
66 kgBerthou
34
72 kgFothen
35
71 kgNorris
36
67 kg
1
70 kgPfingsten
2
69 kgSlik
4
71 kgHansen
5
60 kgKlostergaard
6
69 kgVandyck
8
64 kgCharteau
12
67 kgSilvestre
15
78 kgHurel
16
66 kgKüng
17
83 kgLudvigsson
18
71 kgCornu
19
66 kgBizhigitov
20
76 kgvan Baarle
24
78 kgValgren
25
71 kgCort
27
68 kgDillier
28
75 kgScully
30
85 kgNikolaev
31
66 kgBerthou
34
72 kgFothen
35
71 kgNorris
36
67 kg
Weight (KG) →
Result →
85
60
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | MORTENSEN Martin | 70 |
2 | PFINGSTEN Christoph | 69 |
4 | SLIK Ivar | 71 |
5 | HANSEN Jesper | 60 |
6 | KLOSTERGAARD Kasper | 69 |
8 | VANDYCK Niels | 64 |
12 | CHARTEAU Anthony | 67 |
15 | SILVESTRE Fábio | 78 |
16 | HUREL Tony | 66 |
17 | KÜNG Stefan | 83 |
18 | LUDVIGSSON Fredrik | 71 |
19 | CORNU Jérémy | 66 |
20 | BIZHIGITOV Zhandos | 76 |
24 | VAN BAARLE Dylan | 78 |
25 | VALGREN Michael | 71 |
27 | CORT Magnus | 68 |
28 | DILLIER Silvan | 75 |
30 | SCULLY Tom | 85 |
31 | NIKOLAEV Sergey | 66 |
34 | BERTHOU Eric | 72 |
35 | FOTHEN Markus | 71 |
36 | NORRIS Lachlan | 67 |